Muutke küpsiste eelistusi

Computer Vision ECCV 2024 Workshops: Milan, Italy, September 29October 4, 2024, Proceedings, Part XI [Pehme köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 329 pages, kõrgus x laius: 235x155 mm, 97 Illustrations, color; 1 Illustrations, black and white; LV, 329 p. 98 illus., 97 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15633
  • Ilmumisaeg: 01-Jun-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031919785
  • ISBN-13: 9783031919787
  • Pehme köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 329 pages, kõrgus x laius: 235x155 mm, 97 Illustrations, color; 1 Illustrations, black and white; LV, 329 p. 98 illus., 97 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15633
  • Ilmumisaeg: 01-Jun-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031919785
  • ISBN-13: 9783031919787
The multi-volume set LNCS 15623 until LNCS 15646 constitutes the proceedings of the workshops that were held in conjunction with the 18th European Conference on Computer Vision, ECCV 2024, which took place in Milan, Italy, during September 29October 4, 2024. 



These LNCS volumes contain 574 accepted papers from 53 of the 73 workshops. The list of workshops and distribution of the workshop papers in the LNCS volumes can be found in the preface that is freely accessible online.
DARES: Depth Anything in Robotic Endoscopic Surgery with Self-supervised
Vector LoRA of the Foundation Model.- LocalMamba: Visual State Space Model
with Windowed Selective Scan.- Compositional Text-to-Image Generation with
Feedforward Layout Generation.- PackMambaEfficient Processing of
Variable-Length Sequences in Mamba training.- Down-Sampling Inter-Layer
Adapter for Parameter and Computation Efficient Ultra-Fine-Grained Image
Recognition.- Memory-Efficient Vision Transformers: An Activation-Aware
Mixed-Rank Compression Strategy.- LLaMA-NAS: Efficient Neural Architecture
Search for Large Language Models.- Improving Hyperparameter Optimization with
Checkpointed Model Weights.- MagicDec: Breaking the Latency-Throughput
Tradeoff for Long Contexts with Speculative Decoding.- Mixed Non-linear
Quantization for Vision Transformers.- CycleBNN: Cyclic Precision Training in
Binary Neural Networks.- DailyMAE: Towards Pretraining Masked Autoencoders in
One Day.- EPTQ: Enhanced Post-Training Quantization via Hessian-guided
Network-wise Optimization.- Generalized SAM: Efficient Fine-Tuning of SAM for
Variable Input Image Sizes.- LightAvatar: Efficient Head Avatar as Dynamic
Neural Light Field.- Giving each task what it needs - leveraging structured
sparsity for tailored multi-task learning.- ERF-NAS: Efficient Receptive
Field-based Zero-Shot NAS for Object Detection.- CA3D:
Convolutional-Attentional 3D Nets for Efficient Video Activity Recognition on
the Edge.- Memory-Optimized Once-For-All network.- Famba-V: Fast Vision Mamba
with Cross-Layer Token Fusion.- Latent Distillation for Continual Object
Detection at the Edge.- MCUBench: A Benchmark of Tiny Object Detectors on
MCUs.- Optimizing Resource Consumption in Diffusion Models through
Hallucination Early Detection.