Preface |
|
xiii | |
Author |
|
xv | |
I Image Formation and Image Processing |
|
1 | (152) |
|
1 Introduction to Computer Vision and Basic Concepts of Image Formation |
|
|
3 | (58) |
|
1.1 Introduction and Goals of Computer Vision |
|
|
3 | (3) |
|
1.2 Image Formation and Radiometry |
|
|
6 | (15) |
|
|
6 | (1) |
|
1.2.2 Radiometric quantities |
|
|
7 | (7) |
|
|
14 | (5) |
|
|
19 | (2) |
|
1.3 Geometric Transformation |
|
|
21 | (6) |
|
|
21 | (4) |
|
|
25 | (2) |
|
1.4 Geometric Camera Models |
|
|
27 | (26) |
|
1.4.1 Single camera setup of image formation |
|
|
28 | (10) |
|
1.4.2 Image formation in a stereo vision setup |
|
|
38 | (7) |
|
1.4.3 Basics of stereo correspondence |
|
|
45 | (3) |
|
1.4.4 Issues related to accurate disparity map estimation |
|
|
48 | (5) |
|
1.5 Image Reconstruction from a Series of Projections |
|
|
53 | (7) |
|
1.5.1 Inverse Radon transform - back-projection method |
|
|
57 | (1) |
|
1.5.2 Inverse Radon transform - Fourier transform method |
|
|
58 | (2) |
|
|
60 | (1) |
|
2 Image Processing Concepts |
|
|
61 | (92) |
|
2.1 Fundamentals of Image Processing |
|
|
62 | (15) |
|
|
63 | (11) |
|
2.1.2 Geometric operations |
|
|
74 | (1) |
|
2.1.3 Spatial or neighbourhood operations |
|
|
74 | (2) |
|
2.1.4 Operations between images |
|
|
76 | (1) |
|
|
77 | (33) |
|
2.2.1 Discrete fourier transform |
|
|
81 | (3) |
|
2.2.2 Discrete cosine transform |
|
|
84 | (3) |
|
|
87 | (5) |
|
|
92 | (10) |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
104 | (4) |
|
2.2.8 Contourlet transform |
|
|
108 | (2) |
|
|
110 | (14) |
|
2.3.1 Spatial domain filtering |
|
|
111 | (7) |
|
2.3.2 Frequency domain filtering |
|
|
118 | (1) |
|
2.3.3 Homomorphic filtering |
|
|
119 | (1) |
|
2.3.4 Wiener filter for image restoration |
|
|
120 | (4) |
|
2.4 Colour Image Processing |
|
|
124 | (11) |
|
|
125 | (4) |
|
|
129 | (1) |
|
2.4.3 Colour image enhancement and filtering |
|
|
130 | (4) |
|
|
134 | (1) |
|
|
134 | (1) |
|
2.5 Mathematical Morphology |
|
|
135 | (7) |
|
2.5.1 Binary morphological operations |
|
|
136 | (1) |
|
2.5.2 Applications of binary morphological operations |
|
|
137 | (1) |
|
2.5.3 Grayscale morphological operations |
|
|
138 | (1) |
|
2.5.4 Distance transformation |
|
|
139 | (3) |
|
|
142 | (9) |
|
|
143 | (2) |
|
2.6.2 Region-based segmentation methods |
|
|
145 | (2) |
|
2.6.3 Edge detection-based segmentation |
|
|
147 | (1) |
|
2.6.4 Deformable models for image segmentation |
|
|
148 | (3) |
|
|
151 | (2) |
II Image Features |
|
153 | (58) |
|
3 Image Descriptors and Features |
|
|
155 | (56) |
|
|
156 | (9) |
|
3.1.1 Texture representation methods |
|
|
157 | (3) |
|
|
160 | (2) |
|
3.1.3 MPEG-7 homogeneous texture descriptor |
|
|
162 | (2) |
|
3.1.4 Local binary patterns |
|
|
164 | (1) |
|
|
165 | (2) |
|
|
167 | (16) |
|
3.3.1 Gradient-based methods |
|
|
168 | (7) |
|
3.3.2 Laplacian of Gaussian operator |
|
|
175 | (2) |
|
3.3.3 Difference of Gaussian operator |
|
|
177 | (1) |
|
3.3.4 Canny edge detector |
|
|
177 | (2) |
|
3.3.5 Hough transform for detection of a line and other shapes |
|
|
179 | (4) |
|
3.4 Object Boundary and Shape Representations |
|
|
183 | (9) |
|
3.4.1 Chain code and shape number |
|
|
183 | (2) |
|
3.4.2 Fourier descriptors |
|
|
185 | (1) |
|
3.4.3 Boundary representation by B-spline curves |
|
|
186 | (3) |
|
3.4.4 MPEG-7 contour-based shape descriptor |
|
|
189 | (1) |
|
|
190 | (1) |
|
3.4.6 Angular radial transform shape descriptor |
|
|
191 | (1) |
|
3.5 Interest or Corner Point Detectors |
|
|
192 | (6) |
|
3.5.1 SUSAN edge and corner point detector |
|
|
193 | (1) |
|
3.5.2 Moravec corner detector |
|
|
194 | (1) |
|
3.5.3 Harris corner detector |
|
|
195 | (3) |
|
3.5.4 Hessian corner detector |
|
|
198 | (1) |
|
3.6 Histogram of Oriented Gradients |
|
|
198 | (2) |
|
3.7 Scale Invariant Feature Transform |
|
|
200 | (6) |
|
3.8 Speeded up Robust Features |
|
|
206 | (1) |
|
|
207 | (2) |
|
|
209 | (2) |
III Recognition |
|
211 | (62) |
|
4 Fundamental Pattern Recognition Concepts |
|
|
213 | (60) |
|
4.1 Introduction to Pattern Recognition |
|
|
214 | (4) |
|
|
218 | (3) |
|
4.3 Basic Concepts of Decision Functions |
|
|
221 | (5) |
|
4.3.1 Linear discriminant functions for pattern classification |
|
|
223 | (1) |
|
4.3.2 Minimum distance classifier |
|
|
224 | (2) |
|
4.4 Elementary Statistical Decision Theory |
|
|
226 | (2) |
|
|
228 | (3) |
|
|
231 | (4) |
|
4.6.1 Parametric approaches |
|
|
232 | (1) |
|
4.6.2 Non-parametric approaches |
|
|
233 | (2) |
|
4.7 Clustering for Knowledge Representation |
|
|
235 | (1) |
|
|
235 | (6) |
|
4.8.1 Unsupervised linear dimension reduction |
|
|
236 | (2) |
|
4.8.2 Supervised linear dimension reduction |
|
|
238 | (2) |
|
4.8.3 Semi-supervised linear dimension reduction |
|
|
240 | (1) |
|
|
241 | (7) |
|
4.9.1 Finding patterns in an image |
|
|
241 | (1) |
|
4.9.2 Shape similarity measurement by Hausdorff distance |
|
|
242 | (2) |
|
4.9.3 Matching of temporal motion trajectories |
|
|
244 | (4) |
|
4.10 Artificial Neural Network for Pattern Classification |
|
|
248 | (17) |
|
4.10.1 Simple ANN for pattern classification |
|
|
252 | (5) |
|
4.10.2 Supervised learning |
|
|
257 | (3) |
|
4.10.3 Unsupervised learning |
|
|
260 | (5) |
|
4.11 Convolutional Neural Networks |
|
|
265 | (6) |
|
4.11.1 Convolutional layer |
|
|
267 | (1) |
|
|
268 | (1) |
|
4.11.3 Fully connected layer |
|
|
269 | (2) |
|
|
271 | (1) |
|
|
272 | (1) |
IV Applications |
|
273 | (150) |
|
5 Applications of Computer Vision |
|
|
275 | (148) |
|
5.1 Machine Learning Algorithms and their Applications in Medical Image Segmentation |
|
|
276 | (30) |
|
5.1.1 Clustering for image segmentation |
|
|
278 | (6) |
|
5.1.2 Supervised clustering for image segmentation |
|
|
284 | (4) |
|
5.1.3 Graph partitioning methods |
|
|
288 | (3) |
|
5.1.4 Image segmentation by neural networks |
|
|
291 | (3) |
|
5.1.5 Deformable models for image segmentation |
|
|
294 | (6) |
|
5.1.6 Probabilistic models for image segmentation |
|
|
300 | (1) |
|
|
301 | (4) |
|
|
305 | (1) |
|
5.2 Motion Estimation and Object Tracking |
|
|
306 | (23) |
|
5.2.1 Overview of a video surveillance system |
|
|
307 | (2) |
|
5.2.2 Background subtraction and modeling |
|
|
309 | (2) |
|
|
311 | (2) |
|
5.2.4 Kanade-Lucas-Tomasi tracker |
|
|
313 | (1) |
|
5.2.5 Mean shift tracking |
|
|
314 | (2) |
|
|
316 | (1) |
|
5.2.7 Tracking with Kalman filter |
|
|
317 | (3) |
|
5.2.8 Tracking with particle filter |
|
|
320 | (2) |
|
5.2.9 Multiple camera-based object tracking |
|
|
322 | (1) |
|
5.2.10 Motion estimation by optical flow |
|
|
323 | (4) |
|
5.2.11 MPEG-7 motion trajectory representation |
|
|
327 | (1) |
|
|
328 | (1) |
|
5.3 Face and Facial Expression Recognition |
|
|
329 | (9) |
|
5.3.1 Face recognition by eigenfaces and fisherfaces |
|
|
330 | (1) |
|
5.3.2 Facial expression recognition system |
|
|
331 | (1) |
|
5.3.3 Face model-based FER |
|
|
332 | (2) |
|
5.3.4 Facial expression parametrization |
|
|
334 | (1) |
|
5.3.5 Major challenges in recognizing facial expressions |
|
|
335 | (3) |
|
|
338 | (1) |
|
|
338 | (12) |
|
5.4.1 Major challenges of hand gesture recognition |
|
|
339 | (2) |
|
5.4.2 Vision-based hand gesture recognition system |
|
|
341 | (9) |
|
|
350 | (1) |
|
|
350 | (10) |
|
5.5.1 Image fusion methods |
|
|
353 | (4) |
|
5.5.2 Performance evaluation metrics |
|
|
357 | (2) |
|
|
359 | (1) |
|
|
360 | (63) |
Bibliography |
|
423 | (22) |
Index |
|
445 | |