|
Part I Local Binary Pattern Operators |
|
|
|
|
3 | (10) |
|
1.1 The Role of Texture in Computer Vision |
|
|
3 | (1) |
|
1.2 Motivation and Background for LBP |
|
|
4 | (2) |
|
1.3 A Brief History of LBP |
|
|
6 | (1) |
|
|
7 | (6) |
|
|
10 | (3) |
|
2 Local Binary Patterns for Still Images |
|
|
13 | (36) |
|
|
13 | (1) |
|
2.2 Derivation of the Generic LBP Operator |
|
|
13 | (3) |
|
2.3 Mappings of the LBP Labels: Uniform Patterns |
|
|
16 | (2) |
|
2.4 Rotational Invariance |
|
|
18 | (3) |
|
2.4.1 Rotation Invariant LBP |
|
|
19 | (1) |
|
2.4.2 Rotation Invariance Using Histogram Transformations |
|
|
20 | (1) |
|
2.5 Complementary Contrast Measure |
|
|
21 | (2) |
|
2.6 Non-parametric Classification Principle |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (23) |
|
|
26 | (5) |
|
2.9.2 Neighborhood Topology |
|
|
31 | (1) |
|
2.9.3 Thresholding and Encoding |
|
|
32 | (3) |
|
2.9.4 Multiscale Analysis |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
38 | (1) |
|
2.9.7 Feature Selection and Learning |
|
|
39 | (3) |
|
2.9.8 Complementary Descriptors |
|
|
42 | (1) |
|
2.9.9 Other Methods Inspired by LBP |
|
|
42 | (1) |
|
|
43 | (6) |
|
|
49 | (20) |
|
|
49 | (3) |
|
3.2 Rotation Invariant VLBP |
|
|
52 | (1) |
|
3.3 Local Binary Patterns from Three Orthogonal Planes |
|
|
53 | (4) |
|
3.4 Rotation Invariant LBP-TOP |
|
|
57 | (4) |
|
3.4.1 Problem Description |
|
|
57 | (2) |
|
3.4.2 One Dimensional Histogram Fourier LBP-TOP (1DHFLBP-TOP) |
|
|
59 | (2) |
|
3.5 Other Variants of Spatiotemporal LBP |
|
|
61 | (8) |
|
|
64 | (5) |
|
Part II Analysis of Still Images |
|
|
|
4 Texture Classification and Segmentation |
|
|
69 | (12) |
|
4.1 Texture Classification |
|
|
69 | (4) |
|
4.1.1 Texture Image Datasets |
|
|
70 | (2) |
|
4.1.2 Texture Classification Experiments |
|
|
72 | (1) |
|
4.2 Unsupervised Texture Segmentation |
|
|
73 | (4) |
|
4.2.1 Overview of the Segmentation Algorithm |
|
|
74 | (1) |
|
|
75 | (1) |
|
4.2.3 Agglomerative Merging |
|
|
75 | (1) |
|
4.2.4 Pixelwise Classification |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
77 | (4) |
|
|
78 | (3) |
|
5 Description of Interest Regions |
|
|
81 | (8) |
|
|
81 | (1) |
|
|
82 | (2) |
|
5.3 Image Matching Experiments |
|
|
84 | (3) |
|
|
86 | (1) |
|
|
87 | (2) |
|
|
88 | (1) |
|
6 Applications in Image Retrieval and 3D Recognition |
|
|
89 | (20) |
|
6.1 Block-Based Methods for Image Retrieval |
|
|
89 | (7) |
|
6.1.1 Description of the Method |
|
|
90 | (2) |
|
|
92 | (3) |
|
|
95 | (1) |
|
6.2 Recognition of 3D Textured Surfaces |
|
|
96 | (13) |
|
6.2.1 Texture Description by LBP Histograms |
|
|
97 | (1) |
|
6.2.2 Use of Multiple Histograms as Texture Models |
|
|
98 | (1) |
|
6.2.3 Experiments with CUReT Textures |
|
|
99 | (2) |
|
6.2.4 Experiments with Scene Images |
|
|
101 | (1) |
|
|
102 | (2) |
|
|
104 | (5) |
|
|
|
7 Recognition and Segmentation of Dynamic Textures |
|
|
109 | (18) |
|
7.1 Dynamic Texture Recognition |
|
|
109 | (7) |
|
|
109 | (1) |
|
|
110 | (1) |
|
7.1.3 Multi-resolution Analysis |
|
|
111 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
7.1.6 Results for LBP-TOP |
|
|
113 | (2) |
|
7.1.7 Experiments of Rotation Invariant LBP-TOP to View Variations |
|
|
115 | (1) |
|
7.2 Dynamic Texture Segmentation |
|
|
116 | (7) |
|
|
116 | (2) |
|
7.2.2 Features for Segmentation |
|
|
118 | (2) |
|
7.2.3 Segmentation Procedure |
|
|
120 | (2) |
|
|
122 | (1) |
|
|
123 | (4) |
|
|
124 | (3) |
|
|
127 | (8) |
|
|
127 | (1) |
|
8.2 An LBP-based Approach |
|
|
128 | (2) |
|
8.2 Modifications of the LBP Operator |
|
|
128 | (1) |
|
8.2.2 Background Modeling |
|
|
129 | (1) |
|
8.2.3 Foreground Detection |
|
|
130 | (1) |
|
|
130 | (3) |
|
|
133 | (2) |
|
|
134 | (1) |
|
|
135 | (16) |
|
|
135 | (1) |
|
9.2 Static Texture Based Description of Movements |
|
|
136 | (2) |
|
9.3 Dynamic Texture Method for Motion Description |
|
|
138 | (4) |
|
9.3.1 Human Detection with Background Subtraction |
|
|
138 | (1) |
|
|
139 | (2) |
|
9.3.3 Modeling Temporal Information with Hidden Markov Models |
|
|
141 | (1) |
|
|
142 | (3) |
|
|
145 | (6) |
|
|
146 | (5) |
|
|
|
10 Face Analysis Using Still Images |
|
|
151 | (18) |
|
10.1 Face Description Using LBP |
|
|
151 | (2) |
|
|
153 | (1) |
|
|
154 | (5) |
|
|
159 | (5) |
|
10.5 Facial Expression Recognition |
|
|
164 | (1) |
|
10.6 LBP in Other Face Related Tasks |
|
|
165 | (1) |
|
|
165 | (4) |
|
|
165 | (4) |
|
11 Face Analysis Using Image Sequences |
|
|
169 | (12) |
|
11.1 Facial Expression Recognition Using Spatiotemporal LBP |
|
|
169 | (4) |
|
11.2 Face Recognition from Videos |
|
|
173 | (3) |
|
11.3 Gender Classification from Videos |
|
|
176 | (2) |
|
|
178 | (3) |
|
|
179 | (2) |
|
12 Visual Recognition of Spoken Phrases |
|
|
181 | (12) |
|
|
181 | (1) |
|
|
182 | (1) |
|
12.3 Local Spatiotemporal Descriptors for Visual Information |
|
|
182 | (3) |
|
|
185 | (3) |
|
12.4.1 Dataset Description |
|
|
185 | (1) |
|
12.4.2 Experimental Results |
|
|
185 | (2) |
|
12.4.3 Boosting Slice Features |
|
|
187 | (1) |
|
|
188 | (5) |
|
|
189 | (4) |
|
Part V LBP in Various Computer Vision Applications |
|
|
|
13 LBP in Different Applications |
|
|
193 | (12) |
|
13.1 Detection and Tracking of Objects |
|
|
193 | (1) |
|
|
194 | (1) |
|
13.3 Eye Localization and Gaze Tracking |
|
|
195 | (1) |
|
13.4 Face Recognition in Unconstrained Environments |
|
|
195 | (1) |
|
|
196 | (1) |
|
13.6 Biomedical Applications |
|
|
197 | (1) |
|
13.7 Texture and Video Texture Synthesis |
|
|
198 | (1) |
|
13.8 Steganography and Image Forensics |
|
|
199 | (1) |
|
|
199 | (1) |
|
13.10 Systems for Photo Management and Interactive TV |
|
|
200 | (1) |
|
13.11 Embedded Vision Systems and Smart Cameras |
|
|
201 | (4) |
|
|
202 | (3) |
Index |
|
205 | |