Muutke küpsiste eelistusi

Conceptual Aircraft Design: An Industrial Approach [Kõva köide]

Series edited by (BAE Systems, UK), Series edited by (MIT), (Bombardier, Belfast), (Queen's University Belfast (QUB), UK), (Queen's University Belfast (QUB), UK), Series edited by (University of Liverpool, UK)
  • Formaat: Hardback, 1056 pages, kõrgus x laius x paksus: 259x211x61 mm, kaal: 2427 g
  • Sari: Aerospace Series
  • Ilmumisaeg: 04-Jan-2019
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119500281
  • ISBN-13: 9781119500285
Teised raamatud teemal:
  • Formaat: Hardback, 1056 pages, kõrgus x laius x paksus: 259x211x61 mm, kaal: 2427 g
  • Sari: Aerospace Series
  • Ilmumisaeg: 04-Jan-2019
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119500281
  • ISBN-13: 9781119500285
Teised raamatud teemal:
Provides a Comprehensive Introduction to Aircraft Design with an Industrial Approach 

This book introduces readers to aircraft design, placing great emphasis on industrial practice. It includes worked out design examples for several different classes of aircraft, including Learjet 45, Tucano Turboprop Trainer, BAe Hawk and Airbus A320. It considers performance substantiation and compliance to certification requirements and market specifications of take-off/landing field lengths, initial climb/high speed cruise, turning capability and payload/range. Military requirements are discussed, covering some aspects of combat, as is operating cost estimation methodology, safety considerations, environmental issues, flight deck layout, avionics and more general aircraft systems. The book also includes a chapter on electric aircraft design along with a full range of industry standard aircraft sizing analyses.

Split into two parts, Conceptual Aircraft Design: An Industrial Approach spends the first part dealing with the pre-requisite information for configuring aircraft so that readers can make informed decisions when designing vessels. The second part devotes itself to new aircraft concept definition. It also offers additional analyses and design information (e.g., on cost, manufacture, systems, role of CFD, etc.) integral to conceptual design study. The book finishes with an introduction to electric aircraft and futuristic design concepts currently under study.





Presents an informative, industrial approach to aircraft design Features design examples for aircraft such as the Learjet 45, Tucano Turboprop Trainer, BAe Hawk, Airbus A320 Includes a full range of industry standard aircraft sizing analyses Looks at several performance substantiation and compliance to certification requirements Discusses the military requirements covering some combat aspects Accompanied by a website hosting supporting material

Conceptual Aircraft Design: An Industrial Approach is an excellent resource for those designing and building modern aircraft for commercial, military, and private use.
Series Preface xxxvii
Preface xxxix
Individual Acknowledgements xli
Ajoy Kumar Kundu
By Mark A. Price xlv
By David Riordan xlvii
List of Symbols and Abbreviations
xlix
Road Map of the Book lvii
PART I Prerequisites
1(187)
1 Introduction
3(43)
1.1 Overview
3(1)
1.2 Brief Historical Background
4(6)
1.2.1 Flight in Mythology
4(1)
1.2.2 Fifteenth to Nineteenth Centuries
4(1)
1.2.3 From 1900 to World War I (1914)
5(1)
1.2.4 World War I (1914--1918)
6(3)
1.2.5 Period between World War I and World War II -- Inter War Period, the Golden Age (1918--1939)
9(1)
1.2.6 World War II (1939--1945)
9(1)
1.2.7 Post-World War II
10(1)
1.3 Aircraft Evolution
10(3)
1.3.1 Aircraft Classifications and their Operational Environments
11(2)
1.4 Current Aircraft Design Trends for both Civil and Military Aircraft (the 1980s Onwards)
13(3)
1.4.1 Current Civil Aircraft Trends
15(1)
1.4.2 Current Military Aircraft Trends
15(1)
1.5 Future Trends
16(7)
1.5.1 Civil Aircraft Design
17(2)
1.5.2 Military Aircraft Design
19(1)
1.5.3 UAVs/UASs
20(1)
1.5.4 Military Applications
21(1)
1.5.5 Civil and Commercial Applications
21(1)
1.5.6 Recreational Applications
21(1)
1.5.7 Research and Development Applications
21(1)
1.5.8 Rocket Applications in Future Aircraft Design Trends
22(1)
1.6 Forces and Drivers
23(1)
1.7 Airworthiness Requirements
23(2)
1.8 Current Aircraft Performance Analyses Levels
25(1)
1.8.1 By the Designers
25(1)
1.9 Aircraft Classification
26(1)
1.9.1 Comparison between Civil and Military Design Requirements
26(1)
1.10 Topics of Current Research Interest Related to Aircraft Design (Supersonic/Subsonic)
27(3)
1.11 Cost Implications
30(1)
1.12 The Classroom Learning Process
30(4)
1.12.1 Classroom Learning Process versus Industrial Practices
31(1)
1.12.2 Use of Computer-Assisted Engineering (CAE)
32(1)
1.12.3 What is Not Dealt With in Depth in this Book?
33(1)
1.13 Units and Dimensions
34(1)
1.14 Use of Semi-Empirical Relations and Datasheets
34(2)
1.14.1 Semi-Empirical Relations Compared to Statistical Graphs
35(1)
1.14.2 Use of Semi-Empirical Weights Relations versus use of Weight Fractions
35(1)
1.14.3 Aircraft Sizing
36(1)
1.15 The Atmosphere
36(9)
1.15.1 Hydrostatic Equations and Standard Atmosphere
36(7)
1.15.2 Non-Standard Atmosphere/Off-Standard Atmosphere
43(1)
1.15.3 Altitude Definitions -- Density Altitude (Off Standard)
43(2)
1.15.4 Humidity Effects
45(1)
1.15.5 Greenhouse Effect
45(1)
References
45(1)
2 Aircraft Familiarity, Aircraft Design Process, Market Study
46(32)
2.1 Overview
46(1)
2.2 Introduction
47(1)
2.3 Aircraft Familiarisation
48(5)
2.3.1 Civil Aircraft and its Component Configurations
48(1)
2.3.1.1 Subsonic Jet Aircraft
48(1)
2.3.2 Turboprop Aircraft
49(1)
2.3.3 Military Aircraft and its Component Configurations
50(3)
2.4 Typical Aircraft Design Process
53(1)
2.4.1 Input
53(1)
2.5 Market Survey -- Project Identification
53(4)
2.5.1 Civil Aircraft Market -- Product Identification
56(1)
2.6 Four Phases of Aircraft Design
57(5)
2.6.1 Understanding Optimisation
58(2)
2.6.2 Typical Resources Deployment
60(1)
2.6.3 Typical Cost Frame
61(1)
2.6.4 Typical Time Frame
61(1)
2.7 Typical Task Breakdown in Each Phase
62(5)
2.7.1 Functional Tasks During Conceptual Study (Phase I)
63(1)
2.7.2 Project Activities for Small Aircraft Design
64(3)
2.8 Aircraft Specifications for Three Civil Aircraft Case Studies
67(3)
2.9 Military Market -- Some Typical Military Aircraft Design Specifications
70(3)
2.9.1 Aircraft Specifications/Requirements for Military Aircraft Case Studies
71(2)
2.10 Airworthiness Requirements
73(2)
2.10.1 Code of Federal Regulations (CFR) -- Title 14
73(1)
2.10.1.1 FAR23
73(1)
2.10.1.2 Standard Category (Volume 1, Section 23-3: Aeroplane Categories Dated 2011-01-0)
73(1)
2.10.1.3 Special Category (FAR Part 1.1)
74(1)
2.10.1.4 FAR25
74(1)
2.10.1.5 The Parts of FAR Requirements
74(1)
2.11 Coursework Procedures -- Market Survey
75(1)
References
76(2)
3 Aerodynamic Fundamentals, Definitions and Aerofoils
78(49)
3.1 Overview
78(1)
3.2 Introduction
79(1)
3.3 Airflow Behaviour -- Laminar and Turbulent
80(4)
3.3.1 Aerofoils
84(1)
3.4 Flow Past an Aerofoil
84(1)
3.5 Generation of Lift
85(1)
3.6 Aircraft Motion, Forces and Moments
86(5)
3.6.1 Motion
87(1)
3.6.2 Forces
88(1)
3.6.3 Moments
88(1)
3.6.4 Basic Control Deflections -- Sign Convention
89(1)
3.6.5 Aircraft Loads
89(2)
3.7 Definitions of Aerodynamic Parameters
91(1)
3.8 Aerofoils
91(10)
3.8.1 Subsonic Aerofoils
92(1)
3.8.2 Aerofoil Lift Characteristics
92(1)
3.8.3 Groupings of Subsonic Aerofoils -- NACA/NASA
93(1)
3.8.3.1 NACA Four-Digit Aerofoil
93(1)
3.8.3.2 NACA Five-Digit Aerofoil
94(1)
3.8.3.3 NACA Six-Digit Aerofoil
95(1)
3.8.3.4 NACA Seven-Digit Aerofoil
96(1)
3.8.3.5 NACA Eight-Digit Aerofoil
97(1)
3.8.3.6 Peaky-Section Aerofoil
97(1)
3.8.3.7 NASA Supercritical Aerofoil
98(1)
3.8.3.8 Natural Laminar Flow (NLF) Aerofoil
98(1)
3.8.3.9 NACA GAW Aerofoil
99(1)
3.8.3.10 Supersonic Aerofoils
99(1)
3.8.3.11 Other Types of Subsonic Aerofoil
100(1)
3.9 Reynolds Number and Surface Condition Effects on Aerofoils -- Using NACA Aerofoil Test Data
101(4)
3.9.1 Camber and Thickness Effects
102(3)
3.9.2 Comparison of Three NACA Aerofoils
105(1)
3.10 Centre of Pressure and Aerodynamic Centre
105(4)
3.10.1 Relation Between Centre of Pressure and Aerodynamic Centre
107(1)
3.10.1.1 Estimating the Position of the Aerodynamic Centre, a.c.
107(1)
3.10.1.2 Estimating the Position of the Centre of Pressure, c.p.
108(1)
3.11 Types of Stall
109(1)
3.11.1 Gradual Stall
109(1)
3.11.2 Abrupt Stall
109(1)
3.12 High-Lift Devices
110(2)
3.13 Flow Regimes
112(5)
3.13.1 Compressibility Correction
114(1)
3.13.2 Transonic Effects
115(1)
3.13.3 Supersonic Effects
115(2)
3.14 Summary
117(6)
3.14.1 Simplified Aerofoil Selection Methodology
120(3)
3.15 Aerofoil Design and Manufacture
123(2)
3.15.1 Direct Aerofoil Design Method
123(1)
3.15.2 Inverse Aerofoil Design Method
124(1)
3.15.2.1 Current Practice
124(1)
3.15.2.2 Manufacture
124(1)
3.16 Aircraft Centre of Gravity, Centre of Pressure and Neutral Point
125(1)
3.16.1 Aircraft Centre of Gravity (CG)
125(1)
3.16.2 Aircraft Neutral Point
125(1)
3.16.3 Summary
125(1)
References
125(2)
4 Wings
127(57)
4.1 Overview
127(1)
4.2 Introduction
128(1)
4.3 Generic Wing Planform Shapes
128(4)
4.3.1 Unswept Wing Planform
128(1)
4.3.2 Swept Wing Planform
128(1)
4.3.3 Civil Aircraft
129(2)
4.3.4 Military Aircraft (Supersonic Wings)
131(1)
4.4 Wing Position Relative to Fuselage
132(4)
4.4.1 Advantages and Disadvantages -- Civil and Military Aircraft
133(1)
4.4.1.1 High-Wing
133(1)
4.4.1.2 Low Wing
133(1)
4.4.1.3 Mid-Wing
134(1)
4.4.2 Definitions and Description of Anhedral/Dihedral
134(1)
4.4.2.1 Outer-Wing Dihedral
135(1)
4.4.2.2 Gull Wing
135(1)
4.4.2.3 Inverted Gull Wing
135(1)
4.4.2.4 Parasol
136(1)
4.5 Structural Considerations
136(1)
4.6 Wing Parameter Definitions
137(2)
4.6.1 Wing Reference (Planform) Area, SW
137(1)
4.6.2 Wing Sweep Angle, Λ1/4
138(1)
4.6.3 Wing Aspect Ratio, AR
138(1)
4.6.4 Wing Root Chord (croot) and Tip Chord (ctip)
139(1)
4.6.5 Wing Taper Ratio, λ
139(1)
4.6.6 Wing Twist
139(1)
4.7 Spanwise Variation of Aerofoil t/c and Incidence
139(1)
4.7.1 Wing Stall Pattern and Wing Twist
139(1)
4.8 Mean Aerodynamic Chord (MAC)
140(5)
4.8.1 Linearly Tapered Trapezoidal Wing
141(1)
4.8.2 Kinked Wing -- Double Linearly Tapered Trapezoidal Wing
142(3)
4.9 Wing Aerodynamics
145(8)
4.9.1 Downwash and Effective Angle of Attack, αeff
145(2)
4.9.2 Induced Drag of the Elliptical Wing
147(1)
4.9.3 Induced Drag of the Non-Elliptical Wing -- Oswald's Efficiency Factor
147(1)
4.9.3.1 Downwash
148(1)
4.9.4 AR Correction of 2D Aerofoil Characteristics for a 3D Finite Wing
149(1)
4.9.5 Wing Moment Curve Slope
150(3)
4.10 Wing Load
153(7)
4.10.1 Schrenk's Method -- An Approximate Method to Compute Wing Load
155(4)
4.10.2 Wing Planform Load Distribution
159(1)
4.11 Compressibility Effect: Wing Sweep
160(7)
4.11.1 Compressibility Drag/Wave Drag
160(1)
4.11.2 Wing Sweep
160(2)
4.11.2.1 Sweep Wing Effects
162(1)
4.11.3 Relationship Between Wing Sweep, Mach Number and Aerofoil t/c
162(1)
4.11.3.1 Torenbeek's Method
163(2)
4.11.3.2 Shevell's Method
165(1)
4.11.4 Variable Sweep Wings -- Reconfiguring in Flight
166(1)
4.12 Transonic Wings
167(1)
4.13 Supersonic Wings
167(3)
4.13.1 Supersonic Wing Planform
170(1)
4.14 Additional Vortex Lift-LE Suction
170(1)
4.15 High-Lift Devices on the Wing -- Flaps and Slats
170(5)
4.15.1 High-Lift Device Evolution and Mechanism
171(1)
4.15.2 High-Lift Device CLmax
172(2)
4.15.3 Aileron Size
174(1)
4.16 Additional Surfaces on the Wing
175(1)
4.17 The Square-Cube Law
176(1)
4.18 Influence of Wing Area and Span on Aerodynamics
177(2)
4.18.1 Aircraft Wetted Area (Aw) versus Wing Planform Area (Sw)
177(2)
4.19 Summary of Wing Design
179(4)
4.19.1 Simplified Wing Design Methodology
180(3)
References
183(1)
5 Bodies -- Fuselages, Nacelle Pods, Intakes and the Associated Systems
184(4)
5.1 Overview
184(1)
5.2 Introduction
185(3)
5.2.1 Generic Fuselages
185(1)
5.2.1.1 Civil Aircraft
185(1)
5.2.1.2 Transport Category
186(1)
5.2.1.3 Small Aircraft Category up to Eight Seats
186(1)
5.2.1.4 Military Category Fuselage
186(1)
5.2.1.5 Military Aircraft Fuselage Types
186(1)
5.2.2 Generic Nacelles Pods/Intakes/Auxiliary Bodies
187(1)
CIVIL AIRCRAFT
188(34)
5.3 Fuselage Geometry -- Civil Aircraft
188(1)
5.3.1 Aircraft Zero-Reference Plane/Fuselage Axis
188(1)
5.3.2 Fuselage Length, lfus
189(1)
5.3.3 Front-Fuselage Closure Length, lf
189(1)
5.3.4 Aft-Fuselage Closure Length, la
189(1)
5.3.5 Mid-Fuselage Constant Cross-Section Length, lm
189(1)
5.4 Fuselage Closures -- Civil Aircraft
189(3)
5.4.1 Front (Nose Cone) and Aft-End Closure
190(2)
5.4.2 Fuselage Upsweep Angle
192(1)
5.4.3 Fuselage Plan View Closure Angle
192(1)
5.5 Fuselage Fineness Ratio (FR)
192(2)
5.6 Fuselage Cross-Sectional Geometry -- Civil Aircraft
194(1)
5.6.1 Fuselage Height, H
194(1)
5.6.2 Fuselage Width, W
194(1)
5.6.3 Average Diameter, Dave
194(1)
5.6.4 Cabin Height, Hcah
194(1)
5.6.5 Cabin Width, Wcab
194(1)
5.6.6 Pilot Cockpit/Flight Deck
195(1)
5.6.7 Cabin Interior Details
195(1)
5.7 Fuselage Abreast Seating -- Civil Aircraft
195(2)
5.7.1 Narrow Body
196(1)
5.7.2 Wide Body
196(1)
5.7.3 More than Two Aisles -- Blended Wing Body
196(1)
5.8 Cabin Seat Layout
197(8)
5.8.1 Narrow-Body, Single-Aisle Aircraft
200(1)
5.8.1.1 Two Abreast (4--24 Passengers)
200(1)
5.8.1.2 Three Abreast (24--50 Passengers)
201(1)
5.8.1.3 Four Abreast (Around 44--80 Passengers)
201(1)
5.8.1.4 Five Abreast (80--150 Passengers)
202(1)
5.8.1.5 Six Abreast (120--230 Passengers)
202(1)
5.8.2 Wide-Body, Double-Aisle Aircraft
203(1)
5.8.2.1 Seven Abreast (160--260 Passengers)
203(1)
5.8.2.2 Eight Abreast (250--380 Passengers, Wide-Body Aircraft)
203(1)
5.8.2.3 Nine to Ten Abreast (350--480 Passengers, Wide-Body Aircraft)
204(1)
5.8.2.4 Ten Abreast and More (More than 400--Almost 800 Passenger Capacity, Wide-Body and Double-Decked)
205(1)
5.8.2.5 To summarise
205(1)
5.9 Fuselage Layout
205(1)
5.9.1 Fuselage Configuration -- Summary
206(1)
5.10 Fuselage Aerodynamic Considerations
206(2)
5.10.1 Fuselage Drag
207(1)
5.10.2 Transonic Effects -- Area Rule
207(1)
5.10.3 Supersonic Effects
208(1)
5.11 Fuselage Pitching Moment
208(5)
5.12 Nacelle Pod -- Civil Aircraft
213(7)
5.12.1 Nacelle/Intake External Flow Aerodynamic Considerations
214(1)
5.12.2 Positioning Aircraft Nacelle Pod
215(1)
5.12.3 Wing-Mounted Nacelle Position
216(1)
5.12.3.1 Summary -- Lateral Nacelle Position
216(1)
5.12.3.2 Vertical Position
216(1)
5.12.3.3 Summary -- Vertical Nacelle Position
217(1)
5.12.3.4 Over-Wing Nacelle
217(1)
5.12.4 Fuselage-Mounted Nacelle Position
217(1)
5.12.4.1 Summary -- Fuselage Mounted Nacelle Position
218(1)
5.12.5 Trijet Centre Engine
219(1)
5.12.6 Some Structural Considerations
219(1)
5.13 Exhaust Nozzles -- Civil Aircraft
220(2)
5.13.1 Civil Aircraft Thrust Reverser (TR)
220(2)
MILITARY AIRCRAFT
222(48)
5.14 Fuselage Geometry -- Military Aircraft
222(2)
5.14.1 Fuselage Axis/Zero-Reference Plane -- Military Aircraft
222(1)
5.14.2 Fuselage Length, lfus
223(1)
5.14.3 Fuselage Nose Cone, lcone
223(1)
5.14.4 Front-Fuselage Length, lront
223(1)
5.14.5 Mid-Fuselage Length, lmid
223(1)
5.14.6 Aft-Fuselage Closure Length, laft
223(1)
5.14.7 Fuselage Height, Hfus
223(1)
5.14.8 Fuselage Width, Wfus
223(1)
5.14.9 Fuselage Cross-Sectional Area, Afus
223(1)
5.15 Pilot Cockpit/Flight Deck -- Military Aircraft
224(1)
5.15.1 Flight Deck Height, Hfd
224(1)
5.15.2 Flight Deck Width, Wid
224(1)
5.15.3 Egress
224(1)
5.16 Engine Installation -- Military Aircraft
224(4)
5.16.1 Military Aircraft Intake
225(3)
References
228(1)
6 Empennage and Other Planar Surfaces
229(39)
6.1 Overview
229(1)
6.2 Introduction
230(1)
6.2.1 The Role of the Empennage -- Stabilising and Controlling
230(1)
6.2.2 The Role of Ailerons -- Stabilising and Controlling
230(1)
6.3 Terminologies and Definitions of Empennage
231(1)
6.3.1 Horizontal Tail (H-Tail)
231(1)
6.3.2 Vertical Tail (V-Tail)
232(1)
6.4 Empennage Mount and Types
232(3)
6.4.1 Empennage Positional Configuration -- Single Boom
232(1)
6.4.1.1 Conventional type
232(1)
6.4.1.2 High tee-tail (t-tail)
233(1)
6.4.1.3 Mid-tail (cruciform tail)
234(1)
6.4.1.4 Unconventional Empennage types
234(1)
6.4.2 Empennage Positional Configuration -- Multi- (Twin) Boom
235(1)
6.4.2.1 Conventional Empennage types
235(1)
6.5 Different Kinds of Empennage Design
235(2)
6.5.1 Ruddervator
235(1)
6.5.2 Elevon
236(1)
6.5.3 Stabilator/Taileron
237(1)
6.5.4 Canard Aircraft
237(1)
6.6 Empennage Tail Arm
237(3)
6.6.1 Canard Configuration
238(1)
6.6.2 Tail Volume Coefficients
239(1)
6.6.2.1 H-tail volume coefficient, CHT
239(1)
6.6.2.2 V-tail volume coefficient, CVT
239(1)
6.6.2.3 Canard volume coefficient, CCT
240(1)
6.7 Empennage Aerodynamics
240(16)
6.7.1 Wing Downwash on the H-tail
240(1)
6.7.2 H-tail -- Longitudinal Static Stability: Stick-Fixed and Power-Off
241(3)
6.7.3 V-tail -- Directional Static Stability: Rudder-Fixed
244(3)
6.7.3.1 Rudder lock
247(5)
6.7.4 Aircraft Component Stability
252(1)
6.7.5 Post Stall Behaviour
253(1)
6.7.6 Aerodynamic Shielding of the V-tail
254(1)
6.7.7 Wing Wake on the H-tail
255(1)
6.8 Aircraft Control System
256(3)
6.8.1 Civil Aircraft Control Sub-System
256(1)
6.8.2 Military Aircraft Control Sub-System
256(2)
6.8.3 Reversible and Irreversible Control
258(1)
6.9 Aircraft Control Surfaces and Trim Tabs
259(3)
6.9.1 Aerodynamic Balancing of Control Forces
260(2)
6.9.2 Power Assisted Managing of Control Forces
262(1)
6.9.3 Active Control Systems
262(1)
6.10 Empennage Design
262(2)
6.10.1 Simplified Empennage Design Methodology
263(1)
6.10.2 Control Surfaces Design
263(1)
6.10.3 Effect of Power in Moment Contribution
264(1)
6.11 Other Planar Surfaces
264(3)
6.11.1 Ventral Fins
264(1)
6.11.2 Dorsal Fins (LERX on the V-tail)
265(1)
6.11.3 LERX on the H-tail
266(1)
6.11.4 Pylons
266(1)
6.11.5 Speed Brakes and Dive Brakes
267(1)
References
267(1)
7 Aircraft Statistics, Configuration Choices and Layout
268(2)
7.1 Overview
268(1)
7.2 Introduction
269(1)
CIVIL AIRCRAFT
270(22)
73 Civil Aircraft Mission (Payload Range)
270(22)
7.3.1 Civil Aircraft Economic Considerations
271(1)
7.4 Civil Subsonic Jet Aircraft Statistics (Sizing Parameters)
271(1)
7.41 Civil Aircraft Regression Analysis
272(10)
7.4.2 Maximum Takeoff Mass versus Number of Passengers
272(2)
7.4.3 MTOM versus Operational Empty Mass
274(1)
7.4.4 MTOM versus Fuel Load
275(1)
7.4.5 MTOM versus Wing Area
276(2)
7.4.6 Wing Geometry -- Area versus Loading, Span and Aspect Ratio
278(1)
7.4.7 Empennage Area and Tail Volume Coefficients versus Wing Area
278(2)
7.4.8 Aircraft Lift to Drag Ratio (L/D) versus Wing Aspect Ratio (AR)
280(1)
7.4.9 MTOM versus Engine Power
280(2)
7.5 Internal Arrangements of Fuselage -- Civil Aircraft
282(6)
7.5.1 Flight Crew (Flight Deck) Compartment Layout
282(1)
7.5.2 Cabin Crew and Passenger Facilities
283(1)
7.5.3 Seat Arrangement, Pitch and Posture (95th Percentile) Facilities
283(2)
7.5.4 Passenger Facilities
285(1)
7.5.5 Doors -- Emergency Exits
285(3)
7.5.6 Cargo Container Sizes
288(1)
7.6 Some Interesting Aircraft Configurations -- Civil Aircraft
288(3)
7.7 Summary of Civil Aircraft Design Choices
291(1)
MILITARY AIRCRAFT
292(21)
7.8 Military Aircraft: Detailed Classification, Evolutionary Pattern and Mission Profile
292(7)
7.8.1 Fighter Aircraft Generations
297(2)
7.9 Military Aircraft Mission
299(1)
7.10 Military Aircraft Statistics (Regression Analysis)
299(5)
7.10.1 Military Aircraft MTOM versus Payload
,302
7.10.2 Military MTOM versus OEM
301(1)
7.10.3 Military MTOM versus Fuel Load, Mf
301(1)
7.10.4 Military MTOM versus Wing Area
301(1)
7.10.5 Military MTOM versus Engine Thrust
302(2)
7.10.6 Military Empennage Area versus Wing Area
304(1)
7.11 Military Aircraft Component Geometries
304(6)
7.11.1 Fuselage Group (Military)
304(1)
7.11.2 Wing Group (Military)
305(3)
7.11.3 Empennage Group (Military)
308(1)
7.11.4 Intake/Nacelle Group (Military)
309(1)
7.12 Miscellaneous Comments
310(1)
7.13 Summary of Military Aircraft Design Choices
310(1)
References
311(2)
PART II Aircraft Design
313(8)
8 Configuring Aircraft-Concept Definition
315(6)
8.1 Overview
315(2)
8.2 Introduction
317(4)
8.2.1 Starting Up Aircraft Conceptual Design
318(1)
8.2.1.1 Civil Aircraft
318(1)
8.2.1.2 Military Aircraft
319(1)
8.2.1.3 Military Trainer Aircraft
319(1)
8.2.2 Aircraft CG and Neutral Point
320(1)
CIVIL AIRCRAFT
321(29)
8.3 Prerequisites to Initiate Conceptual Design of Civil Aircraft
321(4)
8.3.1 Starting-Up (Conceptual Definition -- Phase I)
322(1)
8.3.2 Methodology for Shaping and Laying out of Civil Aircraft Configuration
323(1)
8.3.3 Shaping and Laying out of Civil Aircraft Components
324(1)
8.4 Fuselage Design
325(2)
8.4.1 Considerations Needed to Configure the Fuselage
325(1)
8.4.1.1 Methodology for Fuselage Design
326(1)
8.5 Wing Design
327(3)
8.5.1 Considerations in Configuring the Wing
328(1)
8.5.2 Methodology for Wing Design
329(1)
8.5.3 Structural Consideration for a Wing Attachment Along a Fuselage Layout
330(1)
8.6 Empennage Design
330(4)
8.6.1 Horizontal Tail
331(1)
8.6.2 Vertical Tail
331(1)
8.6.2.1 Typical Values of Tail Volume Coefficients
332(1)
8.6.3 Considerations in Configuring the Empennage
333(1)
8.6.4 Methodology for Empennage Design -- Positioning and Layout
333(1)
8.6.4.1 Check Aircraft Variant Empennage
334(1)
8.7 Nacelle and Pylon Design
334(3)
8.7.1 Considerations in Configuring the Nacelle
335(1)
8.7.2 Methodology for Civil Aircraft Nacelle Pod and Pylon Design
335(2)
8.8 Undercarriage
337(1)
8.9 Worked-Out Example: Configuring a Bizjet Class Aircraft
337(13)
8.9.1.1 Aircraft Specifications/Requirements
337(1)
8.9.1.2 Technology Level Adopted
338(1)
8.9.1.3 Statistics of Existing Design with the Class of Aircraft
338(1)
8.9.2 Bizjet Aircraft Fuselage: Typical Shaping and Layout
338(4)
8.9.3 Bizjet Aircraft Wing
342(2)
8.9.4 Bizjet Empennage Design -- Positioning and Layout
344(2)
8.9.4.1 Checking Variant Designs
346(1)
8.9.5 Bizjet Aircraft Nacelle -- Positioning and Layout of an Engine
347(1)
8.9.6 Bizjet Aircraft Undercarriage -- Positioning and Layout
348(1)
8.9.7 Finalising the Preliminary Bizjet Aircraft Configuration
348(1)
8.9.7.1 Consolidate Summary of Bizjet and its Variants at this Stage of `Concept Definition'
349(1)
8.9.7.2 Baseline Aircraft External Dimensions
349(1)
8.9.8 Miscellaneous Considerations in the Bizjet Aircraft
349(1)
MILITARY AIRCRAFT
350(93)
8.10 Prerequisite to Initiate Military (Combat/Trainer) Aircraft Design
350(4)
8.10.1 Starting-Up (Conceptual Definition -- Phase I)
352(1)
8.10.2 Methodology for Shaping and Laying Out of Conventional Two-Surface Military Aircraft
353(1)
8.10.3 Shaping and Laying out of Military Aircraft Components
353(1)
8.11 Fuselage Design (Military -- Combat/Trainer Aircraft)
354(2)
8.11.1 Considerations Needed to Configure a Fuselage
354(1)
8.11.2 Methodology for Fuselage Design
355(1)
8.11.3 Structural Considerations for the Fuselage Layout
356(1)
8.12 Wing Design (Military -- Combat/Trainer Aircraft)
356(2)
8.12.1 Considerations in Configuring the Wing
356(1)
8.12.2 Methodology for Wing Design
357(1)
8.13 Empennage Design (Military -- Combat/Trainer Aircraft)
358(2)
8.13.1 Considerations in Configuring the Empennage
358(1)
8.13.1.1 Typical Values of Tail Volume Coefficients
359(1)
8.13.2 Methodology for Empennage Design
359(1)
8.14 Engine/Intake/Nozzle (Military -- Combat/Trainer Aircraft)
360(1)
8.14.1 Considerations in Configuring the Intake/Nozzle
360(1)
8.14.2 Methodology for Configuring the Intake/Nozzle
361(1)
8.15 Undercarriage (Military -- Combat/Trainer Aircraft)
361(1)
8.16 Worked-Out Example -- Configuring Military AJT Class Aircraft
361(13)
8.16.1 Use of Statistics in the Class of Military Trainer Aircraft
363(2)
8.16.2 AJT -- Fuselage
365(2)
8.16.3 AJT -- Wing
367(2)
8.16.4 AJT -- Empennage
369(1)
8.16.5 AJT -- Engine/Intake/Nozzle
370(1)
8.16.6 Undercarriage Positioning
371(1)
8.16.7 Miscellaneous Considerations -- Military Design
372(1)
8.16.8 Variant CAS Design
372(1)
8.16.9 Summary of Worked-Out Military Aircraft Preliminary Details
373(1)
8.17 Turboprop Trainer Aircraft (TPT)
374(9)
8.17.1 Use of Statistics in the Class of Turboprop Trainer Aircraft (TPT)
376(1)
8.17.2 TPT -- Fuselage
377(1)
8.17.3 TPT -- Wing
378(2)
8.17.4 TPT -- Empennage
380(2)
8.17.5 TPT -- Intake/Exhaust
382(1)
References
383(1)
9 Undercarriage
384(44)
9.1 Overview
384(1)
9.2 Introduction
385(2)
9.3 Types of Undercarriage
387(1)
9.4 Undercarriage Description
388(3)
9.4.1 Tyre (or Tire)
390(1)
9.4.2 Brakes
390(1)
9.4.3 Wheel Gears
390(1)
9.5 Undercarriage Nomenclature and Definitions
391(2)
9.5.1 Wheel Stability
392(1)
9.5.2 Alignment
392(1)
9.6 Undercarriage Retraction and Stowage
393(1)
9.6.1 Stowage Space Clearances
394(1)
9.7 Undercarriage Design Drivers and Considerations
394(2)
9.7.1 Turning of an Aircraft
396(1)
9.8 Tyre Friction with the Ground: Rolling and Braking Friction Coefficient
396(1)
9.9 Load on Wheels and Shock Absorbers
397(3)
9.9.1 Load on Wheel Gears
398(1)
9.9.1.1 Static Condition
399(1)
9.9.1.2 Dynamic Condition -- Brake Application -- Nose Wheel Load
400(1)
9.10 Energy Absorbed
400(2)
9.10.1 Energy Absorption by Strut
401(1)
9.10.2 Energy Absorption by Tyre
401(1)
9.10.3 Deflection under Load
402(1)
9.11 Equivalent Single Wheel Load (ESWL)
402(1)
9.11.1 Floatation
402(1)
9.12 Runway Pavement
403(1)
9.13 Airfield/Runway Strength and Aircraft Operating Compatibility
404(3)
9.13.1 California Bearing Ratio (CBR)
404(1)
9.13.2 Pavement Classification Number (PCN)
404(1)
9.13.3 Aircraft Classification Number (ACN)
405(1)
9.13.4 ACN/PCN Method
405(1)
9.13.5 Load Classification Number (LCN) and Load Classification Group (LCG)
405(2)
9.14 Wheels and Tyres
407(4)
9.14.1 Wheels
407(1)
9.14.1.1 Divided Split Wheel Assembly
407(1)
9.14.1.2 Demountable Wheel Flange Assembly
408(1)
9.14.2 Tyres
408(1)
9.14.3 Tyre Construction
409(1)
9.14.3.1 Tyre Material
410(1)
9.14.3.2 Bias Ply Aircraft Tyres
410(1)
9.14.3.3 Radial Ply Aircraft Tyre
410(1)
9.14.4 Common Construction Layout Arrangements for Both Bias and Radial Ply Tyres
410(1)
9.14.4.1 Difference in Layout Arrangement for both Bias and Radial Ply Tyres
411(1)
9.15 Tyre Nomenclature, Classification, Loading and Selection
411(3)
9.15.1 Tyre Type Classification
412(1)
9.15.2 Tyre Deflection
413(1)
9.15.2.1 Inflation
414(1)
9.15.2.2 Aircraft Tyre Pressure and Size
414(1)
9.15.2.3 Wheel Spacing
414(1)
9.16 Configuring Undercarriage Layout and Positioning
414(3)
9.16.1 Undercarriage Layout Methodology
416(1)
9.17 Worked-Out Examples
417(9)
9.17.1 Civil Aircraft: Bizjet
418(1)
9.17.1.1 Undercarriage Layout and Positioning
418(1)
9.17.1.2 Step-by-Step Approach
418(2)
9.17.1.3 Wheel load
420(1)
9.17.1.4 Tyre selection
420(1)
9.17.1.5 Deflection
420(1)
9.17.1.6 Aircraft LCN
421(1)
9.17.2 Advanced Jet Trainer (Military): AJT
421(1)
9.17.2.1 Undercarriage Layout and Positioning
422(1)
9.17.2.2 Step-by-step approach -- CAS variant
422(2)
9.17.2.3 Wheel load
424(1)
9.17.2.4 Aircraft LCN
425(1)
9.17.2.5 Tyre Selection (CAS)
425(1)
9.17.2.6 Deflection
425(1)
9.17.2.7 CAS Variant of AJT
425(1)
9.17.3 Turboprop Trainer: TPT
425(1)
9.18 Discussion and Miscellaneous Considerations
426(1)
9.18.1 Undercarriage and Tyre Data
426(1)
References
427(1)
10 Aircraft Weight and Centre of Gravity Estimation
428(15)
10.1 Overview
428(1)
10.1.1 Coursework Content
429(1)
10.2 Introduction
429(2)
10.2.1 From `Concept Definition' to `Concept Finalisation'
431(1)
10.3 The Weight Drivers
431(1)
10.4 Aircraft Mass (Weight) Breakdown
432(1)
10.5 Aircraft CG and Neutral Point Positions
433(3)
10.5.1 Neutral Point, NP
435(1)
10.5.2 Aircraft CG Travel
435(1)
10.6 Aircraft Component Groups
436(2)
10.6.1 Aircraft Components
436(2)
10.7 Aircraft Component Mass Estimation
438(5)
10.7.1 Use of Semi-Empirical Weight Relations versus Use of Weight Fractions
439(1)
10.7.1.1 Weight Fraction Method
439(1)
10.7.1.2 Semi-Empirical Method
439(2)
10.7.2 Limitations in Use of Semi-Empirical Formulae
441(2)
CIVIL AIRCRAFT
443(18)
10.8 Mass Fraction Method -- Civil Aircraft
443(2)
10.8.1 Mass Fraction Analyses
444(1)
10.9 Graphical Method -- Civil Aircraft
445(1)
10.10 Semi-Empirical Equation Method (Statistical)
446(9)
10.10.1 Fuselage Group (MF) -- Civil Aircraft
447(2)
10.10.2 Wing Group -- Civil Aircraft
449(1)
10.10.3 Empennage Group -- Civil Aircraft
450(1)
10.10.4 Nacelle Group -- Civil Aircraft
450(2)
10.10.5 Undercarriage Group -- Civil Aircraft
452(1)
10.10.6 Miscellaneous Group -- Civil Aircraft
452(1)
10.10.7 Power Plant Group -- Civil Aircraft
452(1)
10.10.8 Systems Group -- Civil Aircraft
453(1)
10.10.9 Furnishing Group -- Civil Aircraft
454(1)
10.10.10 Contingency and Miscellaneous -- Civil Aircraft
454(1)
10.10.11 Crew -- Civil Aircraft
454(1)
10.10.12 Payload -- Civil Aircraft
454(1)
10.10.13 Fuel -- Civil Aircraft
455(1)
10.11 Centre of Gravity Determination
455(1)
10.12 Worked-Out Example -- Bizjet Aircraft
456(5)
10.12.1 Fuselage Group Mass
457(1)
10.12.2 Wing Group Mass
457(1)
10.12.3 Empennage Group Mass
458(1)
10.12.4 Nacelle Group Mass
458(1)
10.12.5 Undercarriage Group Mass
458(1)
10.12.6 Miscellaneous Group Mass
458(1)
10.12.7 Power Plant Group Mass
459(1)
10.12.8 Systems Group Mass
459(1)
10.12.9 Furnishing Group Mass
459(1)
10.12.10 Contingency and Miscellaneous Group Mass
459(1)
10.12.11 Crew Mass
459(1)
10.12.12 Payload Mass
459(1)
10.12.13 Fuel Mass
459(1)
10.12.14 Weight Summary
459(1)
10.12.15 Bizjet Aircraft Mass and CG Location Example
460(1)
10.12.16 First Iteration to Fine-Tune CG Position Relative to an Aircraft and Components
460(1)
MILITARY AIRCRAFT
461(1)
10.13 Mass Fraction Method -- Military Aircraft
461(2)
10.14 Graphical Method to Predict Aircraft Component Weight -- Military Aircraft
463(1)
10.15 Semi-Empirical Equations Method (Statistical) -- Military Aircraft
463(5)
10.15.1 Military Aircraft Fuselage Group (SI System)
464(1)
10.15.2 Military Aircraft Wing Mass (SI System)
465(1)
10.15.3 Aircraft Empennage
465(1)
10.15.4 Nacelle Mass Example -- Military Aircraft
465(1)
10.15.5 Power Plant Group Mass Example -- Military Aircraft
465(1)
10.15.6 Undercarriage Mass Example -- Military Aircraft
466(1)
10.15.7 System Mass -- Military Aircraft (Higher Mass Fraction for Lighter Aircraft)
467(1)
10.15.8 Aircraft Furnishing (Ejection Seat) -- Military Aircraft
467(1)
10.15.9 Miscellaneous Group (MMISC) -- Military Aircraft
467(1)
10.15.10 Contingency (MCONT) -- Military Aircraft
467(1)
10.15.11 Crew Mass
467(1)
10.15.12 Fuel (MFUEL)
467(1)
10.15.13 Payload (MPL)
467(1)
10.16 CG Determination -- Military Aircraft
468(1)
10.17 Classroom Example of Military AJT/CAS Aircraft Mass Estimation
468(1)
10.17.1 AJT Fuselage (Based on CAS Variant)
468(1)
10.17.2 AJT Wing (Based on CAS Variant)
469(1)
10.17.3 AJT Empennage (Based on CAS Variant)
469(1)
10.17.4 AJT Nacelle Mass (Based on CAS Variant)
469(1)
10.17.5 AJT Power Plant Group Mass (Based on AJT Variant)
470(1)
10.17.6 AJT Undercarriage Mass (Based on CAS Variant)
470(1)
10.17.7 AJT Systems Group Mass (Based on AJT Variant)
470(1)
10.17.8 AJT Furnishing Group Mass
470(1)
10.17.9 AJT Contingency Group Mass
470(1)
10.17.10 AJT Crew Mass
470(1)
10.17.11 AJT Fuel Mass (MFUEL)
470(1)
10.17.12 AJT Payload Mass (MPL)
470(1)
10.18 AJT Mass Estimation and CG Location
471(1)
10.19 Classroom Example of a Turboprop Trainer (TPT) Aircraft and COIN Variant Weight Estimation
472(4)
10.19.1 TPT Fuselage Example
474(1)
10.19.2 TPT Wing Example
474(1)
10.19.3 TPT Empennage Example
474(1)
10.19.4 TPT Nacelle Mass Example
475(1)
10.19.5 TPT Power Plant Group Mass Example
475(1)
10.19.6 TPT Undercarriage Mass Example (Based on CAS Variant)
475(1)
10.19.7 TPT Systems Group Mass Example
475(1)
10.19.8 TPT Furnishing Group Mass Example
475(1)
10.19.9 TPT Contingency Group Mass Example
475(1)
10.19.10 TPT Crew Mass Example
476(1)
10.19.11 TPT Fuel (MFUEL)
476(1)
10.19.12 TPT Payload (MPL)
476(1)
10.20 Classroom Worked-Out TPT Mass Estimation and CG Location
476(2)
10.20.1 COIN Variant
476(2)
10.21 Summary of Concept Definition
478(1)
References
478(1)
11 Aircraft Drag
479(61)
11.1 Overview
479(1)
11.2 Introduction
480(1)
11.3 Parasite Drag Definition
481(1)
11.4 Aircraft Drag Breakdown (Subsonic)
482(1)
11.4.1 Discussion
483(1)
11.5 Understanding Drag Polar
483(4)
11.5.1 Actual Drag Polar
484(1)
11.5.2 Parabolic Drag Polar
485(1)
11.5.3 Comparison Between Actual and Parabolic Drag Polar
485(2)
11.6 Aircraft Drag Formulation
487(1)
11.7 Aircraft Drag Estimation Methodology (Subsonic)
488(1)
11.8 Minimum Parasite Drag Estimation Methodology
489(2)
11.8.1 Geometric Parameters, Reynolds Number and Basic CF Determination
489(1)
11.8.2 Computation of Wetted Areas
490(1)
11.8.2.1 Lifting Surfaces
490(1)
11.8.2.2 Fuselage
490(1)
11.8.2.3 Nacelle
490(1)
11.8.3 Stepwise Approach to Compute Minimum Parasite Drag
491(1)
11.9 Semi-Empirical Relations to Estimate Aircraft-Component Parasite Drag
491(9)
11.9.1 Fuselage
491(3)
11.9.2 Wing, Empennage, Pylons and Winglets
494(1)
11.9.3 Nacelle Drag
495(1)
11.9.3.1 Intake Drag
496(1)
11.9.3.2 Base Drag
497(1)
11.9.3.3 Boat Tail Drag
497(1)
11.9.3.4 Nacelle 3D Effects
498(1)
11.9.3.5 Total Nacelle Drag
498(1)
11.9.4 Recovery Factor
499(1)
11.9.5 Excrescence Drag
499(1)
11.9.6 Miscellaneous Parasite Drags
499(1)
11.9.6.1 Air-Conditioning Drag
500(1)
11.9.6.2 Trim Drag
500(1)
11.9.6.3 Aerials
500(1)
11.10 Notes on Excrescence Drag Resulting from Surface Imperfections
500(1)
11.11 Minimum Parasite Drag
501(1)
11.12 ΔCDp Estimation
501(1)
11.13 Subsonic Wave Drag
502(1)
11.14 Total Aircraft Drag
503(1)
11.15 Low-Speed Aircraft Drag at Takeoff and Landing
503(5)
11.15.1 High-Lift Device Drag
504(2)
11.15.2 Dive Brakes and Spoiler Drag
506(1)
11.15.3 Undercarriage Drag
506(2)
11.15.4 One-Engine Inoperative Drag
508(1)
11.16 Propeller-Driven Aircraft Drag
508(1)
11.17 Military Aircraft Drag
509(1)
11.18 Supersonic Drag
509(2)
11.19 Coursework Example -- Civil Bizjet Aircraft
511(8)
11.19.1 Geometric and Performance Data
511(2)
11.19.2 Computation of Wetted Areas, Re and Basic CF
513(1)
11.19.3 Computation of 3D and Other Effects to Estimate Component CDpmin
514(4)
11.19.4 Summary of Parasite Drag
518(1)
11.19.5 ACDp Estimation
518(1)
11.19.6 Induced Drag
518(1)
11.19.7 Total Aircraft Drag at LRC
519(1)
11.20 Classroom Example -- Subsonic Military Aircraft (Advanced Jet Trainer -- AJT)
519(3)
11.20.1 AJT Details
522(1)
11.21 Classroom Example -- Turboprop Trainer (TPT)
522(5)
11.21.1 TPT Details
524(3)
11.22 Classroom Example -- Supersonic Military Aircraft
527(10)
11.22.1 Geometric and Performance Data of Vigilante -- RA C5 Aircraft
527(1)
11.22.2 Computation of Wetted Areas, Re and Basic CF
528(1)
11.22.3 Computation of 3D and Other Effects to Estimate Component CDpmin
529(3)
11.22.4 Summary of Parasite Drag (ISA Day, 36182 ft Altitude and Mach 0.9)
532(1)
11.22.5 ΔCDp Estimation
532(1)
11.22.6 Induced Drag
533(1)
11.22.7 Supersonic Drag Estimation
533(3)
11.22.8 Total Aircraft Drag
536(1)
11.23 Drag Comparison
537(1)
11.24 Some Concluding Remarks
538(1)
References
538(2)
12 Aircraft Power Plant and Integration
540(37)
12.1 Overview
540(1)
12.2 Background
540(3)
12.3 Definitions
543(3)
12.3.1 Recovery Factor, RF
545(1)
12.4 Introduction -- Air-Breathing Aircraft Engine Types
546(5)
12.4.1 Simple Straight-Through Turbojets
546(1)
12.4.2 Turbofan -- Bypass Engine (Two Flow -- Primary and Secondary)
546(2)
12.4.3 Three Flow Bypass Engine
548(1)
12.4.4 Afterburner Engines
548(1)
12.4.5 Turboprop Engines
548(1)
12.4.6 Piston Engines
549(2)
12.5 Simplified Representation of a Gas Turbine (Brayton/Joule) Cycle
551(1)
12.6 Formulation/Theory -- Isentropic Case (Trend Analysis)
551(5)
12.6.1 Simple Straight-Through Turbojet Engine -- Formulation
552(1)
12.6.2 Bypass Turbofan Engines -- Formulation
553(2)
12.6.3 Afterburner Engines -- Formulation
555(1)
12.6.4 Turboprop Engines -- Formulation
556(1)
12.6.4.1 Summary
556(1)
12.7 Engine Integration to Aircraft -- Installation Effects
556(4)
12.7.1 Subsonic Civil Aircraft Nacelle and Engine Installation
557(1)
12.7.2 Turboprop Integration to Aircraft
558(1)
12.7.3 Combat Aircraft Engine Installation
559(1)
12.8 Intake/Nozzle Design
560(3)
12.8.1 Civil Aircraft Subsonic Intake Design
560(1)
12.8.2 Military Aircraft Supersonic Intake Design
561(1)
12.8.2.1 Intake at Fuselage Nose with a Centre Body
561(1)
12.8.2.2 Intake at the Fuselage Side
562(1)
12.9 Exhaust Nozzle and Thrust Reverser (TR)
563(3)
12.9.1 Civil Aircraft Exhaust Nozzles
565(1)
12.9.2 Military Aircraft TR Application and Exhaust Nozzles
565(1)
12.10 Propeller
566(2)
12.10.1 Propeller-Related Definitions
566(2)
12.11 Propeller Theory
568(4)
12.11.1 Momentum Theory -- Actuator Disc
568(3)
12.11.2 Blade Element Theory
571(1)
12.12 Propeller Performance -- Use of Charts, Practical Engineering Applications
572(3)
12.12.1 Propeller Performance -- Blade Numbers 3 ≤ N ≥ 4
575(1)
References
575(2)
13 Aircraft Power Plant Performance
577(31)
13.1 Overview
577(1)
13.2 Introduction
578(3)
13.2.1 Engine Performance Ratings
578(1)
13.2.1.1 Takeoff Rating
578(1)
13.2.1.2 Flat-Rated Takeoff Rating
578(1)
13.2.1.3 Maximum Continuous Rating
579(1)
13.2.1.4 Maximum Climb Rating
579(1)
13.2.1.5 Maximum Cruise Rating
579(1)
13.2.1.6 Idle Rating
579(1)
13.2.1.7 Recovery Factor, RF
580(1)
13.2.2 Turbofan Engine Parameters
580(1)
13.3 Uninstalled Turbofan Engine Performance Data -- Civil Aircraft
581(9)
13.3.1 Performance with BPR 4 ± 1 (Smaller Engines, e.g. Bizjets)
582(1)
13.3.1.1 Takeoff Rating
582(1)
13.3.1.2 Maximum Climb Rating
583(1)
13.3.1.3 Maximum Cruise Rating
584(1)
13.3.1.4 Idle Rating
584(1)
13.3.2 BPR Around 6 ± 1 (Larger Engines)
585(1)
13.3.2.1 Turbofan performance
585(1)
13.3.2.2 Takeoff Rating
585(1)
13.3.2.3 Maximum Climb Rating
585(1)
13.3.2.4 Maximum Cruise Rating
585(1)
13.3.3 BPR Around 10 ± 2 (Larger Engines -- Big Jets, Wide Body Aircraft)
585(1)
13.3.4 Uninstalled Turbofan Engine Performance Data -- Military (BPR < 1)
585(2)
13.3.5 Uninstalled Turboprop Engine Performance Data (All Types up to 100 Passenger Class)
587(2)
13.3.5.1 Takeoff Rating
589(1)
13.3.5.2 Maximum Climb Rating
589(1)
13.3.5.3 Maximum Cruise Rating
589(1)
13.4 Installed Engine Performance Data of Matched Engines to Coursework Aircraft
590(4)
13.4.1 Turbofan Engines (Smaller Engines for Bizjets -- BPR $ 4)
590(1)
13.4.1.1 Takeoff Rating (Bizjet) -- STD Day
590(1)
13.4.1.2 Maximum Climb Rating (Bizjet) -- STD Day
590(2)
13.4.1.3 Maximum Cruise Rating (Bizjet) -- STD Day
592(1)
13.4.1.4 Idle Rating (Bizjet) -- STD Day
592(1)
13.4.2 Turbofans with BPR Around 6 ± 1 (Larger Engines -- Regional Jets and Above)
592(1)
13.4.3 Military Turbofan (Advanced Jet Trainer/CAS Role -- BPR < 1) -- STD Day
593(1)
13.5 Installed Turboprop Performance Data
594(4)
13.5.1 Propeller Performance at STD Day -- Worked-Out Example
594(2)
13.5.2 Turboprop Performance at STD Day
596(1)
13.5.2.1 Maximum Takeoff Rating (Turboprop) -STD Day
596(1)
13.5.2.2 Maximum Climb Rating -- STD Day
597(1)
13.5.2.3 Maximum Cruise Rating (Turboprop) -- STD Day
597(1)
13.6 Piston Engine
598(4)
13.7 Engine Performance Grid
602(4)
13.7.1 Installed Maximum Climb Rating (TFE731-20 Class Turbofan)
603(1)
13.7.2 Maximum Cruise Rating (TFE731-20 Class Turbofan)
604(2)
13.8 Some Turbofan Data (OPR = Overall Pressure Ratio)
606(1)
References
607(1)
14 Aircraft Sizing, Engine Matching and Variant Derivatives
608(23)
14.1 Overview
608(1)
14.1.1 Summary
609(1)
14.2 Introduction
609(1)
14.2.1 Civil Aircraft
609(1)
14.2.2 Military Aircraft
610(1)
14.3 Theory
610(5)
14.3.1 Sizing for Takeoff Field Length (TOFL) -- Two Engines
611(2)
14.3.1.1 Civil Aircraft Design: Takeoff
613(1)
14.3.1.2 Military Aircraft Design: Takeoff
613(1)
14.3.2 Sizing for the Initial Rate of Climb (All Engines Operating)
614(1)
14.3.3 Sizing to Meet Initial Cruise
614(1)
14.3.4 Sizing for Landing Distance
615(1)
14.4 Coursework Exercise -- Civil Aircraft Design (Bizjet)
615(2)
14.4.1 Takeoff
615(1)
14.4.2 Initial Climb
616(1)
14.4.3 Cruise
616(1)
14.4.4 Landing
617(1)
14.5 Sizing Analysis -- Civil Aircraft (Bizjet)
617(2)
14.5.1 Variants in the Family of Aircraft Designs
618(1)
14.5.2 Bizjet Family
619(1)
14.6 Coursework Exercise -- Military Aircraft (AJT)
619(4)
14.6.1 Takeoff-Military Aircraft
620(1)
14.6.2 Initial Climb -- Military Aircraft
620(1)
14.6.3 Cruise -- Military Aircraft
620(1)
14.6.4 Landing -- Military Aircraft
621(1)
14.6.5 Sizing for the Turn Requirement of 4g at Sea Level
621(2)
14.7 Sizing Analysis -- Military Aircraft (AJT)
623(2)
14.7.1 Single Seat Variants in the Family of Aircraft Designs
624(1)
14.7.1.1 Configuration
624(1)
14.7.1.2 Thrust
625(1)
14.7.1.3 Drag
625(1)
14.8 Aircraft Sizing Studies and Sensitivity Analyses
625(1)
14.8.1 Civil Aircraft Sizing Studies
625(1)
14.8.1.1 Military Aircraft Sizing Studies
625(1)
14.9 Discussion
626(4)
14.9.1 The AJT
629(1)
References
630(1)
15 Aircraft Performance
631(51)
15.1 Overview
631(1)
15.1.1 Section 15.13: Summarised Discussion of the DesignClasswork Content
631(1)
15.2 Introduction
632(3)
15.2.1 Aircraft Speed
633(1)
15.2.2 Some Prerequisite Information
633(1)
15.2.3 Cabin Pressurisation
634(1)
15.3 Takeoff Performance
635(7)
15.3.1 Civil Transport Aircraft Takeoff [ FAR (14CFR) 25.103/107/109/149]
636(1)
15.3.2 Balanced Field Length (BFL) -- Civil Aircraft
637(1)
15.3.2.1 Normal All-Engine Operating (Takeoff) -- Civil Aircraft
637(1)
15.3.2.2 Unbalanced Field Length (UBFL) -- Civil Aircraft
638(1)
15.3.3 Civil Aircraft Takeoff Segments [ FAR (14CFR) 25.107 -- Subpart B]
638(2)
15.3.4 Derivation of Takeoff Equations
640(1)
15.3.4.1 Acceleration
640(1)
15.3.4.2 Takeoff Field Length (TOFL) Estimation -- Distance Covered from zero to V2
640(2)
15.4 Landing Performance
642(2)
15.4.1 Approach Climb and Landing Climb and Baulked Landing
643(1)
15.4.2 Derivation of Landing Performance Equations
643(1)
15.4.2.1 Ground Distance During Glide, Sglide
643(1)
15.5 Climb Performance
644(4)
15.5.1 Derivation of Climb Performance Equations
645(1)
15.5.2 Quasi-Steady State Climb
645(1)
15.5.2.1 Constant EAS Climb
645(1)
15.5.2.2 Constant Mach Climb
646(2)
15.6 Descent Performance
648(1)
15.6.1 Derivation of Descent Performance Equations
648(1)
15.7 Checking of the Initial Maximum Cruise Speed Capability
649(1)
15.8 Payload-Range Capability -- Derivation of Range Equations
649(2)
15.9 In Horizontal Plane (Yaw Plane) -- Sustained Coordinated Turn
651(2)
15.9.1 Kinetics of a Coordinated Turn in Steady (Equilibrium) Flight
651(2)
15.9.2 Maximum Conditions for a Turn in the Horizontal Plane
653(1)
15.10 Aircraft Performance Substantiation -- Worked-Out Classroom Examples -- Bizjet
653(15)
15.10.1 Checking TOFL (Bizjet) -- Specification Requirement 4400 ft
654(1)
15.10.1.1 All-Engine Takeoff-20° Flap
655(1)
15.10.1.2 One Engine Inoperative -- Balanced Field Takeoff (BFL) Inoperative
656(4)
15.10.2 Checking Landing Field Length (Bizjet) -- Specification Requirement 4400 ft
660(1)
15.10.3 Checking Takeoff Climb Performance Requirements (Bizjet)
661(1)
15.10.4 Checking Initial En Route Rate of Climb -- Specification Requirement is 2600 ft min"1
661(2)
15.10.5 Integrated Climb Performance (Bizjet)
663(1)
15.10.6 Checking Initial High-Speed Cruise (Bizjet) -- Specification Requirement of High-Speed Cruise Mach 0.75 at 41000 ft Altitude
663(1)
15.10.7 Specific Range (Bizjet)
664(1)
15.10.8 Descent Performance (Bizjet) -- Limitation Maximum Descent Rate of 1800 ft min"1
664(3)
15.10.9 Checking out the Payload-Range Capability -- Requirement of 2000 nm
667(1)
15.11 Aircraft Performance Substantiation -- Military AJT
668(9)
15.11.1.1 AJT data
669(1)
15.11.1.2 Mission Profile
669(2)
15.11.2 Checking TOFL (AJT) -- Specification Requirement 3600 ft (1100 m)
671(1)
15.11.2.1 Takeoff with 8° Flap
671(3)
15.11.3 Checking the Second Segment Climb Gradient at 8° Flap
674(1)
15.11.4 Checking Landing Field Length (AJT) -- Specification Requirement 3600 ft
674(1)
15.11.5 Checking the Initial Climb Performance -- Requirement 50 ms-1 (10000 ft min-1) at Normal Training Configuration (NTC)
675(1)
15.11.6 Checking the Maximum Speed -- Requirement Mach 0.85 at 30000 ft Altitude at NTC
675(1)
15.11.7 Compute the Fuel Requirement (AJT)
676(1)
15.11.8 Turn Capability -- Check nmax at the Turn (AJT)
677(1)
15.12 Propeller-Driven Aircraft -- TPT (Parabolic Drag Polar)
677(1)
15.13 Summarised Discussion of the Design
678(3)
15.13.1 The Bizjet
679(1)
15.13.2 The AJT
680(1)
References
681(1)
16 Aircraft Cost Considerations
682(31)
16.1 Overview
682(1)
16.2 Introduction
683(3)
16.3 Aircraft Cost and Operational Cost
686(4)
16.3.1 Operating Cost (OC)
687(3)
16.4 Rapid Cost Modelling
690(11)
16.4.1 Nacelle Cost Drivers
692(2)
16.4.2 Nose Cowl Parts and Subassemblies
694(1)
16.4.3 Methodology (Nose Cowl Only)
694(3)
16.4.4 Cost Formulae and Results
697(4)
16.5 Aircraft Direct Operating Cost (DOC)
701(6)
16.5.1 Formulation to Estimate DOC
703(2)
16.5.2 Worked-Out Example of DOC -- Bizjet
705(2)
16.6 Aircraft Performance Management
707(3)
16.6.1 Methodology
709(1)
16.6.2 Discussion -- the Broader Issues
710(1)
References
710(3)
PART III Further Design Considerations
713(207)
17 Aircraft Load
715(3)
17.1 Overview
715(1)
17.2 Introduction
715(3)
17.2.1 Buffet
716(1)
17.2.1.1 Q-Corner -- (Coffin Corner)
716(1)
17.2.2 Flutter
717(1)
17.3 Flight Manoeuvres
718(1)
17.3.1 Pitch-Plane (x--z-Plane) Manoeuvre: (Elevator/Canard Induced)
718(1)
17.3.2 Roll-Plane (y--z-Plane) Manoeuvre: (Aileron Induced)
718(1)
17.3.3 Yaw-Plane (y--x-Plane) Manoeuvre: (Rudder Induced)
718(1)
17 A Aircraft Loads
718(12)
17.4.1.1 On-Ground
718(1)
17.4.1.2 In Flight
719(1)
17.5 Theory and Definitions
719(1)
17.5.1 Load Factor, n
719(1)
17.6 Limits -- Load and Speeds
720(1)
17.6.1 Maximum Limit of Load Factor, n
720(1)
17.7 V-n Diagram
721(5)
17.7.1 Speed Limits
722(1)
17.7.2 Extreme Points of the V-n Diagram
723(1)
17.7.2.1 Positive Loads
723(1)
17.7.2.2 Negative Loads
723(1)
17.7.3 Low-Speed Limit
724(1)
17.7.4 Manoeuvre Envelope Construction
725(1)
17.7.5 High-Speed Limit
725(1)
17.8 Gust Envelope
726(3)
17.8.1 Gust Load Equations
726(2)
17.8.2 Gust Envelope Construction
728(1)
References
729(1)
18 Stability Considerations Affecting Aircraft Design
730(26)
18.1 Overview
730(1)
18.2 Introduction
730(1)
18.3 Static and Dynamic Stability
731(5)
18.3.1 Longitudinal Stability -- Pitch-Plane (Pitch Moment, M)
733(1)
18.3.2 Directional Stability -- Yaw-Plane (Yaw Moment, JV)
733(1)
18.3.3 Lateral Stability -- Roll-Plane (Roll Moment, L)
734(2)
18.3.4 Summary of Forces, Moments and their Sign Conventions
736(1)
18.4 Theory
736(5)
18.4.1 Pitch-Plane
736(3)
18.4.2 Yaw-Plane
739(1)
18.4.3 Roll-Plane
740(1)
18.5 Current Statistical Trends for Horizontal and Vertical Tail Coefficients
741(1)
18.6 Stick Force -- Aircraft Control Surfaces and Trim Tabs
741(2)
18.6.1 Stick Force
741(2)
18.7 Inherent Aircraft Motions as Characteristics of Design
743(4)
18.7.1 Short-Period Oscillation and Phugoid Motion (Long-Period Oscillation)
743(1)
18.7.2 Directional/Lateral Modes of Motion
744(3)
18.7.3 Spinning
747(1)
18.8 Design Considerations for Stability -- Civil Aircraft
747(3)
18.9 Military Aircraft -- Non-Linear Effects
750(2)
18.10 Active Control Technology (ACT) -- Fly-by-Wire (FBW)
752(2)
18.11 Summary of Design Considerations for Stability
754(1)
18.11.1 Civil Aircraft
754(1)
18.11.2 Military Aircraft -- Non-Linear Effects
755(1)
References
755(1)
19 Materials and Structures
756(50)
19.1 Overview
756(1)
19.2 Introduction
756(3)
19.3 Function of Structure -- Loading
759(2)
19.3.1 Wing
759(1)
19.3.2 Empennage/Tail
759(1)
19.3.3 Fuselage
760(1)
19.3.4 Undercarriage
760(1)
19.3.5 Torsion
761(1)
19.4 Basic Definitions -- Structures
761(1)
19.4.1 Structure
761(1)
19.4.2 Load
762(1)
19.4.3 Limit Load
762(1)
19.4.4 Proof Load
762(1)
19.4.5 Ultimate Load
762(1)
19.4.6 Structural Stiffness
762(1)
19.5 From Structure to Material
762(1)
19.6 Basic Definitions -- Materials
763(2)
19.6.1 Stress
763(1)
19.6.2 Strain
764(1)
19.6.3 Hooke's Law
765(1)
19.7 Material Properties
765(1)
19.7.1 Stiffness
765(1)
19.7.2 Yield Stress
765(1)
19.7.3 Fracture Toughness
765(1)
19.7.4 Ductility
766(1)
19.7.5 Durability
766(1)
19.8 Considerations with Respect to Design
766(10)
19.8.1 Material Selection
766(5)
19.8.2 Ashby Scatter Plots
771(1)
19.8.3 Material Cost Considerations
771(3)
19.8.4 Manufacture
774(2)
19.8.5 Integrated Decisions
776(1)
19.8.6 Design Exercise
776(1)
19.9 Structural Configuration
776(8)
19.9.1 Bending
776(2)
19.9.2 Torsion
778(3)
19.9.3 Buckling
781(1)
19.9.3.1 Column/Beam Buckling
782(1)
19.9.3.2 Plate Buckling
783(1)
19.10 Materials -- General Considerations
784(2)
19.11 Metals
786(2)
19.12 Wood and Fabric
788(1)
19.13 Composite Materials
788(5)
19.13.1 Composite Materials, Fibre and Fabric
789(1)
19.13.1.1 Plain Weave
790(1)
19.13.1.2 Twill Weave
790(1)
19.13.1.3 Satin Weave
790(1)
19.13.2 Types of Synthetic Composite Material Fibre
790(1)
19.13.3 Matrix Bond for Composite Material Fibre
790(1)
19.13.4 Strength Characteristics of Composite Materials
791(1)
19.13.5 Honeycomb Structural Panels
791(2)
19.14 Structural Configurations
793(7)
19.14.1 Skin
793(1)
19.14.2 Fuselage
794(1)
19.14.3 Wings
794(2)
19.14.4 Spars
796(1)
19.14.5 Ribs and Stringers
797(1)
19.14.6 Fuselage Structural Considerations
797(1)
19.14.7 Assembly and Wing Box
798(1)
19.14.8 Empennage
799(1)
19.15 Rules of Thumb and Concept Checks
800(4)
19.16 Finite Element Analysis (FEA)/Finite Element Method (FEM)
804(1)
References
805(1)
20 Aircraft Manufacturing Considerations
806(19)
20.1 Overview
806(2)
20.2 Introduction
808(1)
20.3 Design for Manufacture and Assembly (DFM/A)
808(1)
20.4 Manufacturing Practices
809(2)
20.5 Six-Sigma Concept
811(1)
20.6 Tolerance Relaxation at the Wetted Surface
812(2)
20.6.1 Cost Versus Tolerance Relationship
813(1)
20.7 Reliability and Maintainability (R&M)
814(1)
20.8 The Design Considerations
814(3)
20.9 `Design for Customer' (A Figure of Merit)
817(4)
20.9.1 Index for the `Design for Customer'
818(1)
20.9.2 Worked-Out Example
818(1)
20.9.3 Discussion
819(2)
20.10 Digital Manufacturing Process Management
821(3)
20.10.1 The Product, Process and Resource (PPR) Hub
822(1)
20.10.2 Integration of CAD/CAM, Manufacturing, Operations and In-Service Domains
822(1)
20.10.3 Shop-Floor Interface
823(1)
20.10.4 Design for Maintainability and 3D-Based Technical Publication Generation
824(1)
References
824(1)
21 Miscellaneous Design Considerations
825(22)
21.1 Overview
825(1)
21.2 Introduction
826(1)
21.3 History of FAA -- the Role of Regulation
827(4)
21.3.1 The Role of Regulation
830(1)
21.4 Flight Test
831(1)
21.5 Contribution by the Ground Effect on Takeoff
832(1)
21.6 Aircraft Environmental Issues
833(5)
21.6.1 Noise Emissions
833(5)
21.6.2 Engine Exhaust Emissions
838(1)
21.7 Flying in Adverse Environments
838(4)
21.7.1 Group 1 -- Adverse Environments due to Loss of Visibility
839(1)
21.7.2 Group 2 -- Adverse Environments due to Aerodynamic and Stability/Control Degradation
839(2)
21.7.3 Bird Strikes
841(1)
21.8 Military Aircraft Flying Hazards
842(1)
21.8.1 Aircraft Combat Survivability
842(1)
21.9 End-of-Life Disposal
842(1)
21.10 Extended Range Twin-Engine Operation (ETOP)
843(1)
21.11 Flight and Human Physiology
843(2)
21.11.1 Aircraft Design Considerations for Human Factors
844(1)
21.11.2 Automation -- Unmanned Aircraft Vehicle (UAV)/Unmanned Aircraft System (UAS)
844(1)
21.12 Some Emerging Scenarios
845(1)
21.12.1 Counter-Terrorism Design Implementation
845(1)
21.12.2 Health Issues
845(1)
21.12.3 Damage From Runway Debris (an Old Problem Needs a New Look)
845(1)
References
846(1)
22 Aircraft Systems
847(39)
22.1 Overview
847(1)
22.2 Introduction
848(1)
22.3 Environmental Issues (Noise and Engine Emission)
849(2)
22.3.1 Noise Emissions
849(2)
22.4 Safety Issues
851(2)
22.4.1 Doors -- Emergency Egress
851(1)
22.4.2 Escape Slide/Chute -- Emergency Egress
852(1)
22.4.2.1 Classroom Exercise
852(1)
22.5 Aircraft Flight Deck (Cockpit) Layout
853(9)
22.5.1 Air Data Instruments and Flight Deck
854(1)
22.5.2 Altitude Measurement-Altimeter
855(1)
22.5.3 Airspeed Measuring Instrument -- Pitot-Static Tube
855(1)
22.5.4 Angle of Attack Probe
856(1)
22.5.5 Vertical Speed Indicator (VSI)
857(1)
22.5.6 Temperature Measurement
857(1)
22.5.7 Turn/Side Slip Indicator
858(1)
22.5.8 Multi-Functional Display (MFD)/Electronic Flight Instrument System (EFIS)
858(2)
22.5.9 Civil Aircraft Flight Deck
860(1)
22.5.10 Combat Aircraft Flight Deck
861(1)
22.5.11 Heads-Up Display (HUD)
861(1)
22.5.12 Hands on Throttle and Stick (HOTAS) and Side Stick Controller
862(1)
22.5.13 Helmet Mounted Display (HMD)
862(1)
22.5.14 Voice Operated Control
862(1)
22.6 Aircraft Systems
862(12)
22.6.1 Aircraft Control Subsystems
863(2)
22.6.2 Engine and Fuel Control Subsystems
865(1)
22.6.2.1 Piston Engine/Fuel Control System (Total System Weight Around 1-1.5% of MTOW)
865(1)
22.6.2.2 Turbofan Engine/Fuel Control System (Total System Weight Around 1.5-2% of MTOW)
866(1)
22.6.2.3 Fuel Storage and Flow Management
867(1)
22.6.3 Emergency Power Supply
867(1)
22.6.4 Avionics Subsystems
868(1)
22.6.4.1 Military Application
868(1)
22.6.4.2 Civil Application
869(1)
22.6.5 Electrical Subsystems
869(1)
22.6.6 Hydraulic Subsystem
870(1)
22.6.7 Pneumatic System
871(1)
22.6.7.1 Environment Control System (ECS) -- Cabin Pressurisation/Air-Conditioning
872(2)
22.6.8 Oxygen System
874(1)
22.6.8.1 Oxygen Supply
874(1)
22.7 Flying in Adverse Environments and Passenger Utility
874(4)
22.7.1 Anti-Icing/De-icing Systems
874(1)
22.7.1.1 Use of Hot Air Blown Through Ducts
874(1)
22.7.1.2 Use of Electrical Impulses
875(1)
22.7.1.3 Use of Chemicals
875(1)
22.7.1.4 Use of Boots (Pneumatic/Electric)
875(1)
22.7.2 De-Fogging and Rain Removal System
875(1)
22.7.3 Lightning and Fire Hazards
876(1)
22.7.4 Utility Subsystems
877(1)
22.7.5 Passenger Services and Utility Usage
878(1)
22.7.6 Aircraft Sound Horn
878(1)
22.8 Military Aircraft Survivability
878(7)
22.8.1 Military Emergency Escape -- Egress
878(4)
22.8.2 Aircraft Combat Survivability
882(1)
22.8.3 Returning to Home Base
882(1)
22.8.4 Military Aircraft Stealth Considerations
882(1)
22.8.5 Low Observable (LO) Aircraft Configuration
883(1)
22.8.5.1 Heat Signature
883(1)
22.8.5.2 Radar Signature
884(1)
References
885(1)
23 Computational Fluid Dynamics
886(13)
23.1 Overview
886(1)
23.2 Introduction
887(1)
23.3 Current Status
888(1)
23.4 Approach Road to CFD Analyses
889(3)
23.5 Some Case Studies
892(1)
23.6 Hierarchy of CFD Simulation Methods
893(3)
23.7 Summary of Discussions
896(1)
23.7.1 CFD Analyses
896(1)
23.7.2 Wind Tunnel Tests
897(1)
23.7.3 Flight Tests
897(1)
References
897(2)
24 Electric Aircraft
899(21)
24.1 Overview
899(1)
24.2 Introduction
900(2)
24.3 Energy Storage
902(3)
24.3.1 Lithium-Ion Battery
904(1)
24.3.2 Fuel Cells
904(1)
24.3.3 Solar Cell
904(1)
24.4 Prime Mover -- Motors
905(1)
24.4.1 Controller
905(1)
24.5 Electric Powered Aircraft Power Train
906(2)
24.5.1 Battery Powered Aircraft Power Train
906(1)
24.5.2 Fuel Cell Powered Aircraft Power Train
906(1)
24.5.3 Solar Energy (Photovoltaic Cell) Powered Aircraft Power Train
907(1)
24.6 Hybrid Electric Aircraft (HEA)
908(2)
24.7 Distributed Electric Propulsion (DEP)
910(1)
24.8 Electric Aircraft Related Theory/Analyses
911(3)
24.8.1 Battery and Motor
911(1)
24.8.2 Conventional Aircraft Performance
911(1)
24.8.3 Battery Powered Electric Aircraft Range Equation
912(1)
24.8.4 Fuel Cell Powered Electric Aircraft Range Equation
913(1)
24.9 Electric Powered Aircraft Sizing
914(2)
24.10 Discussion
916(2)
24.10.1 Overall Aircraft Performance with Battery Powered Aircraft
917(1)
24.10.2 Operating Cost of Battery Powered Aircraft
917(1)
24.10.3 Battery Powered Unmanned Aircraft Vehicle (UAV)/Unmanned Aircraft System (UAS)
918(1)
24.11 Worked-Out Example
918(1)
References
919(1)
Appendix A Conversions and Important Equations
920(3)
Appendix B International Standard Atmosphere Table Data from Hydrostatic Equations
923(3)
Appendix C Fundamental Equations (See Table of Contents for Symbols and Nomenclature.)
926(6)
C.1 Kinetics
926(1)
C.2 Thermodynamics
926(1)
C.3 Supersonic Aerodynamics
927(1)
C.4 Normal Shock
928(1)
C.5 Oblique Shock
929(1)
C.6 Supersonic Flow Past a 2D Wedge
929(1)
C.7 Supersonic Flow Past 3D Cone
930(1)
C.8 Incompressible Low Speed Wind Tunnel (Open Circuit)
931(1)
Appendix D Some Case Studies -- Aircraft Data
932(16)
D.1 Airbus320 Class Aircraft
932(1)
D.1.1 Dimensions (to Scale the Drawing for Detailed Dimensions)
932(1)
D.2 Drag Computation
932(10)
D.2.1 Fuselage
932(1)
D.2.2 Wing
933(1)
D.2.3 Vertical Tail
934(1)
D.2.4 Horizotal Tail
935(1)
D.2.5 Nacelle, CFn
935(1)
D.2.6 Pylon
936(1)
D.2.7 Roughness Effect
936(1)
D.2.8 Trim Drag
936(1)
D.2.9 Aerial and Other Protrusions
936(1)
D.2.10 Air Conditioning
936(1)
D.2.11 Aircraft Parasite Drag Build-Up Summary and CDpmin
937(1)
D.2.12 ΔCDp Estimation
937(1)
D.2.13 Induced Drag, CDi
937(1)
D.2.14 Total Aircraft Drag
938(1)
D.2.15 Engine Rating
938(1)
D.2.16 Weights Breakdown (There Could be Some Variation)
938(1)
D.2.17 Payload Range (150 Passengers)
939(2)
D.2.18 Cost Calculations (US$ -- Year 2000)
941(1)
D.3 The Belfast (B100) -- A Fokker F100 Class Aircraft
942(2)
D.3.1 Customer Specification and Geometric Data
942(1)
D.3.1.1 Customer Specification
942(1)
D.3.1.2 Family Variants
942(1)
D.3.1.3 Fuselage (Circular Constant Section)
942(1)
D.3.1.4 Wing
943(1)
D.3.1.5 V-tail (Aerofoil 64-010)
943(1)
D.3.1.6 H-tail (Tee Tail, Aerofoil 64-210 -- Installed with Negative Camber)
943(1)
D.3.1.7 Nacelle (Each -- 2 Required)
943(1)
D.3.2 The B100 Aircraft Weight Summary
943(1)
D.3.2.1 Weight Summary
943(1)
D.3.2.2 Engine (Use Figures 13.5 to 13.7 -- Uninstalled Values)
943(1)
D.3.2.3 Other Pertinent Data
943(1)
D.3.2.4 High Lift Devices (Flaps and Slats)
944(1)
D.3.2.5 B100 Drag
944(1)
D.4 The AK4 (4-Place Utility Aircraft) -- Retractable Undercarriage
944(4)
D.4.1 Customer Specification and Geometric Data
944(1)
D.4.1.1 Customer Specification
944(1)
D.4,1.2 Fuselage
944(1)
D.4.1.3 Wing
944(1)
D.4.1.4 V-tail (Aerofoil 64-010)
945(1)
D.4.1.5 H-tail (Tee Tail, Aerofoil 64-210 -- Installed with Negative Camber)
945(1)
D.4.1.6 High Lift Devices (Slotted Flaps)
945(1)
D.4.1.7 Engine Details -- STD Day Performance (Figure D.5)
945(1)
D.4.1.8 Engine Data
946(1)
D.4.1.9 Propeller
946(1)
D.4.2 The AK4 Aircraft its Component Weights (kg)
947(1)
Appendix E Aerofoil Data
948(11)
Data Courtesy of I. R. Abbott and A. E. Von Doenhoff, Theory of Wing Sections
948(11)
Appendix F Wheels and Tyres
959(6)
F.1 Glossary -- Bias Tyres
959(1)
F.2 Glossary -- Radial Bias Tyres
960(1)
F.3 Tyre Terminology
961(1)
F.4 Typical Tyre Data
962(3)
Index 965
Dr. Ajoy Kumar Kundu, PhD, FRAeS, FIMechE, CEng, is a former Professor (IIT, Kharagpur), Chief Aircraft Designer (HAL) and retired from Bombardier, Belfast. He is current honorary visiting faculty member in the School of Mechanical and Aerospace Engineering (QUB). He held private pilot licence.

Professor Mark A. Price, PhD, CEng, FRAeS, FIMechE, is Pro-Vice-Chancellor for the Faculty of Engineering and Physical Sciences at Queen's University Belfast (QUB).

David Riordan, MSc, CEng, is Engineering Fellow, Nacelle Design and Powerplant Integration at Bombardier, Belfast, having previously been Chief Technical Engineer.