About the Editors |
|
vii | |
List of Contributors |
|
ix | |
List of Abbreviations |
|
xi | |
Preface |
|
xv | |
1 The Conceptual Density Functional Theory: Origin and Development to Study Atomic and Molecular Hardness |
|
1 | (14) |
|
|
|
1 | (1) |
|
|
2 | (1) |
|
1.2 Theoretical Background of Conceptual Density Functional Theory |
|
|
2 | (4) |
|
1.3 CDFT Descriptors and Their Uses |
|
|
6 | (2) |
|
1.4 Computation of the Equalized Molecular Descriptors |
|
|
8 | (4) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (2) |
2 Density Functional Theory for Chemical Reactivity |
|
15 | (30) |
|
Ramon Alain Miranda-Quintana |
|
|
|
15 | (1) |
|
|
16 | (2) |
|
2.2 Density Functional Theory |
|
|
18 | (7) |
|
2.3 Open Systems and Density Matrices |
|
|
25 | (6) |
|
2.4 Conceptual Density Functional Theory |
|
|
31 | (9) |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
41 | (1) |
|
|
41 | (4) |
3 Computing the Unconstrained Local Hardness |
|
45 | (16) |
|
|
|
|
|
45 | (1) |
|
|
46 | (1) |
|
3.2 Computational Approach to the Unconstrained Local Hardness |
|
|
47 | (3) |
|
|
50 | (4) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
56 | (5) |
4 Grand-Canonical Interpolation Models |
|
61 | (28) |
|
Ramon Alain Miranda-Quintana |
|
|
|
|
62 | (1) |
|
|
62 | (2) |
|
4.2 Interpolation and Grand Canonical Ensemble Models: The Irrelevancy of Degeneracy |
|
|
64 | (3) |
|
4.3 The Linear Model for E vs. N |
|
|
67 | (4) |
|
4.4 Nonlinear E vs. N Models: Parabolic and Exponential Interpolation |
|
|
71 | (2) |
|
|
73 | (3) |
|
|
76 | (4) |
|
4.7 Differentiable Grand Canonical Interpolation Models |
|
|
80 | (3) |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
84 | (5) |
5 Chemical Equalization Principles and Their New Applications |
|
89 | (56) |
|
|
|
|
|
90 | (1) |
|
|
90 | (1) |
|
5.2 Chemical Reactivity Indices in Conceptual Density Functional Theory |
|
|
91 | (4) |
|
5.3 Electronegativity Equalization Principle |
|
|
95 | (12) |
|
5.4 Chemical Hardness Equalization Principle |
|
|
107 | (27) |
|
5.5 Electrophilicity Equalization Principle and Nucleophilicity Equalization Principle |
|
|
134 | (5) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
140 | (1) |
|
|
140 | (5) |
6 Inhibition of Metallic Corrosion by N, O, S Donor Schiff Base Molecules |
|
145 | (50) |
|
|
|
|
146 | (1) |
|
|
147 | (1) |
|
6.2 Materials Used in Industry |
|
|
148 | (1) |
|
6.3 Why Do We Need Inhibitors? |
|
|
149 | (6) |
|
6.4 Effectiveness of Corrosion Inhibitors |
|
|
155 | (14) |
|
6.5 Schiff Bases Used as Corrosion Inhibitors |
|
|
169 | (16) |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
186 | (9) |
7 Conceptual Density Functional Theory and Its Application to Corrosion Inhibition Studies |
|
195 | (22) |
|
|
|
|
|
|
|
196 | (1) |
|
7.2 Corrosion Mechanisms of Steel |
|
|
197 | (3) |
|
|
200 | (2) |
|
7.4 Brief Theory of Density Functional Theory (DFT) |
|
|
202 | (2) |
|
7.5 Conceptual DFT Parameters Related to Corrosion Inhibition |
|
|
204 | (5) |
|
7.6 An Illustrative Example of the Application of Conceptual DFT to Corrosion Inhibition Studies |
|
|
209 | (4) |
|
|
213 | (1) |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
214 | (3) |
8 Phase Description of Reactive Systems |
|
217 | (34) |
|
|
|
217 | (1) |
|
|
218 | (3) |
|
8.2 Density and Current Attributes of Quantum States |
|
|
221 | (3) |
|
8.3 Resultant Information Measures and Phase-Equilibria |
|
|
224 | (6) |
|
8.4 Reaction Stages in Acid-Base Systems |
|
|
230 | (6) |
|
8.5 Charge Transfer Derivatives of Electronic Descriptors |
|
|
236 | (4) |
|
8.6 Populational Derivatives of Entropy/Information Measures |
|
|
240 | (6) |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
247 | (4) |
9 Failures of Embedded Cluster Models for pKa Shifts Dominated by Electrostatic Effects |
|
251 | (14) |
|
|
|
|
|
251 | (1) |
|
|
252 | (1) |
|
9.2 Computational Details |
|
|
253 | (2) |
|
|
255 | (2) |
|
|
257 | (1) |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
260 | (5) |
10 A Statistical Perspective on Molecular Similarity |
|
265 | (12) |
|
|
|
|
|
266 | (2) |
|
10.2 Relationship between Molecular Similarity and Gaussian Processes (Kriging) |
|
|
268 | (4) |
|
|
272 | (1) |
|
|
272 | (1) |
|
|
273 | (1) |
|
|
273 | (4) |
11 Modeling Chemical Reactions with Computers |
|
277 | (20) |
|
|
|
|
277 | (2) |
|
11.2 The Potential Energy Surface and the Born-Oppenheimer Approximation |
|
|
279 | (1) |
|
|
280 | (5) |
|
11.4 Molecular Mechanics (MM) |
|
|
285 | (4) |
|
11.5 Free Energy Calculation |
|
|
289 | (4) |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
295 | (2) |
12 Calculation of Proton Affinity, Gas-Phase Basicity, and Enthalpy of Deprotonation of Polyfunctional Compounds Based on High-Level Density Functional Theory |
|
297 | (28) |
|
|
|
|
297 | (3) |
|
12.2 Computational Details |
|
|
300 | (4) |
|
12.3 Results and Discussion |
|
|
304 | (14) |
|
|
318 | (1) |
|
|
319 | (1) |
|
|
320 | (1) |
|
|
320 | (5) |
13 Tautomerism and Density Functional Theory |
|
325 | (18) |
|
|
|
325 | (1) |
|
|
325 | (2) |
|
13.2 Computational Details |
|
|
327 | (1) |
|
13.3 Results and Discussion |
|
|
328 | (10) |
|
|
338 | (1) |
|
|
339 | (1) |
|
|
340 | (3) |
14 Ionization Energies of Atoms of 103 Elements of the Periodic Table Using Semiemprical and DFT Methods |
|
343 | (18) |
|
|
|
|
|
344 | (1) |
|
|
344 | (4) |
|
14.2 Method of Computation |
|
|
348 | (7) |
|
14.3 Results and Discussion |
|
|
355 | (2) |
|
|
357 | (1) |
|
|
358 | (1) |
|
|
358 | (3) |
15 Molecular Similarity from Manifold Learning on D2-Property Images |
|
361 | (30) |
|
|
|
|
361 | (2) |
|
15.2 Property Enhanced Intramolecular Distances (PEIDs) |
|
|
363 | (2) |
|
|
365 | (2) |
|
15.4 Manifold Learning of Molecular Images |
|
|
367 | (9) |
|
|
376 | (1) |
|
|
377 | (1) |
|
|
377 | (1) |
|
|
378 | (13) |
Index |
|
391 | |