Muutke küpsiste eelistusi

Conformation of Carbohydrates [Kõva köide]

  • Formaat: Hardback, 410 pages, kõrgus x laius: 280x210 mm, kaal: 1469 g
  • Ilmumisaeg: 16-Dec-1998
  • Kirjastus: Taylor & Francis Ltd
  • ISBN-10: 9057023148
  • ISBN-13: 9789057023149
Teised raamatud teemal:
  • Formaat: Hardback, 410 pages, kõrgus x laius: 280x210 mm, kaal: 1469 g
  • Ilmumisaeg: 16-Dec-1998
  • Kirjastus: Taylor & Francis Ltd
  • ISBN-10: 9057023148
  • ISBN-13: 9789057023149
Teised raamatud teemal:
This text will give the reader a firm understanding of all aspects of carbohydrate conformation by describing and explaining the importance of interactions between carbohydrates and interactions of carbohydrates with proteins, nucleic acids or any other macromolecule., The authors have gathered a wealth of information on carbohydrate structures, different methods of conformational analysis, the role of carbohydrates as recognition molecules in biological systems and their industrial applications., Whether you are a student, teacher or a basic researcher, this text book is a ‘one-stop’ source of current information on carbohydrate conformation and the potential use of conformational properties in industry and also of their crucial role in important biological events such as cell-cell interaction, cell adhesion, cellular signaling mechanism.
Preface xiii
Configuration of Monosaccharides
1(28)
Introduction
1(1)
Classification
1(1)
Simple Monosaccharides
1(1)
Fischer Projection Formulae
2(1)
Cahn-Ingold-Prelog System of Notation for Chiral Centers
3(1)
Derivation of Monosaccharides from Trioses
3(4)
Anomeric Forms of Sugars
7(2)
Pyranose Form of Monosaccharides
9(5)
Similarities Between Monosaccharides
14(1)
Furanose Form of Monosaccharides
14(1)
Derivatives of Monosaccharides
14(10)
Deoxy sugars
14(2)
Modifications of the hydroxyl groups
16(1)
Amino derivatives
16(2)
Acid and alcohol derivatives
18(2)
Glycosans and anhydro sugars
20(1)
Glycosides
21(1)
Neuraminic acid
22(1)
Muramic acid
23(1)
Higher Monosaccharides
24(5)
Methods of Conformational Analysis
29(20)
Introduction
29(2)
X-ray crystallography
29(1)
Nuclear magnetic resonance spectroscopy
29(2)
Resonance energy transfer method
31(1)
Other spectroscopic methods
31(1)
Computational Methods
31(18)
Quantum chemical methods
32(1)
Ab initio Hartree-Fock methods
32(1)
Semi-empirical methods
32(1)
Empirical methods
33(1)
Contact criteria
33(1)
Potential energy functions
34(1)
Van der Waals's interactions
34(1)
Electrostatic interactions
35(1)
Hydrogen bond interactions
36(1)
Torsional energy
36(1)
Bond length deformation
37(1)
Bond angle deformation
37(1)
Exo-anomeric effect
37(1)
Improper torsional term
38(1)
Energy minimization
38(1)
Simulation methods
39(1)
Molecular dynamics simulations
39(1)
Simulated annealing
39(1)
Monte Carlo simulations
39(1)
Free energy simulations
40(1)
Effect of solvent
40(1)
Force fields
40(1)
PEFAC2
40(1)
PEF91L
41(1)
MM2CARB
41(1)
Modification of CHARMM
41(1)
CHEAT95
41(1)
Modification of Tripos force field
41(1)
Modifications of AMBER
41(1)
GLYCAM_93
42(7)
Conformation of Monosaccharides
49(42)
Introduction
49(1)
Theoretical Methods
50(6)
Hassel-Ottar scheme
50(1)
Reeves-Kelly scheme
50(4)
Barker and Shaw scheme
54(1)
Angyal scheme
55(1)
Energy minimization studies
55(1)
Experimental Methods
56(4)
Complex formation
56(1)
Nuclear magnetic resonance spectroscopy
57(1)
X-ray crystallography
58(2)
Theoretical and Solution Studies
60(12)
Favored conformations of aldopyranoses
60(3)
Flexibility of the pyranose ring
63(1)
Conformation of hydroxyl and hydroxymethyl groups
64(2)
Methyl glycopyranosides
66(1)
Acetylated aldopyranoses
67(2)
2-Acetamido-2-deoxy hexopyranoses
69(1)
Muramic acids
70(1)
Sialic acids
70(1)
Aldohexopyranuronic acids
71(1)
X-Ray Crystallographic Studies
72(8)
Pyranose ring conformation
72(4)
Deviations in the pyranose ring geometry
76(4)
Conformation of the substituents at C1 atom and hydroxymethyl group
80(1)
Hydrogen bonding
80(1)
Ab Initio Molecular Orbital (MO) Studies
80(11)
Anomeric and Δ2 effects
81(1)
Anomeric effect of 1-OAc group
82(1)
Reverse anomeric effect
83(2)
The C--O bond length
85(6)
Conformation of Disaccharides
91(40)
Introduction
91(2)
Conventions and Definitions
93(1)
Exo-Anomeric Effect and Linkage Conformation
94(4)
Conformation Around The α1→2-, &alpha1→3- and α1→4-Linkages
98(13)
Kojibiose, nigerose and maltose
98(1)
``Rigid pyranose ring'' studies
98(3)
``Flexible pyranose ring'' studies
101(5)
Neu5Ac-α2→3-Gal
106(2)
Neu5Ac-α2→8-Neu5Ac
108(1)
Disaccharides containing fructopyranose
109(1)
Thio derivatives of disaccharides
109(2)
Conformation Around The β1→2-, β1→3- and β1→4-Linkages
111(6)
Sophorose, laminarabiose and cellobiose
111(1)
``Rigid pyranose ring'' studies
111(3)
``Flexible pyranose ring'' studies
114(1)
Disaccharide units of chondroitin sulfates
114(2)
Disaccharide units of carrageenans
116(1)
Conformation Around The 1→6-Linkages
117(1)
Conformation of the Non-Reducing Disaccharides
118(3)
Trehalose
118(1)
Sucrose
118(3)
Conformation of C-Glycosides
121(1)
Conformation in the Solid State
122(9)
Conformation of Oligosaccharides
131(60)
Introduction
131(1)
ASN-Linked Oligosaccharides
131(5)
Factors influencing N-glycosidic-linkage
131(2)
Stereochemistry of N-glycosylation sites
133(1)
Structure and classification
134(2)
Modifications of the core pentasaccharide
136(1)
Nomenclature
136(1)
Conformational Studies of ASN-Linked Oligosaccharides
136(5)
Conformation of oligosaccharides in glycopeptides/glycoproteins
136(2)
MD Simulations of oligo-mannoses, hybrid and complex type oligosaccharides
138(1)
β1→4-linkages
138(2)
α1→3-linkages
140(1)
α1→6-linkages
141(1)
Importance of the torsion angle Ψ of α1→6-linkages
141(1)
α1→2-linkages
141(1)
β1→2-linkages
141(1)
Correlation of the Conformational Preferences of Oligosaccharides with the Biological Functions
141(6)
Pathways for the processing of Man9GlcNAc2 to Man5GlcNAc2
142(4)
Addition of terminal sugars to Man5GlcNAc2 by Golgi Glycosyltransferases
146(1)
GlcNAc addition by GlcNAc transferase I
146(1)
Effect of Bisecting GlcNAc on the extension of oligosaccharide chain
147(1)
Addition of galactose to biantennary oligosaccharide by β1→4-galactosyltransferase
147(1)
O-Linked Oligosaccharides
147(4)
Mucins
148(1)
Stereochemistry of O-glycosylation sites
148(1)
Conformational studies of O-linked oligosaccharides
148(3)
Blood Group Determinants and Related Oligosaccharides
151(7)
ABO(H) system
151(1)
Lewis system
151(1)
Ii-system
151(1)
Conformational studies
151(1)
Blood group determinants
151(1)
Constituent disaccharides
152(1)
ABO(H) determinants
153(2)
Lewis determinants
155(1)
Sialylated oligosaccharides
156(2)
Milk oligosaccharides
158(1)
Glycosaminoglycans
158(8)
Conformational studies of the oligosaccharides of glycosaminoglycans
162(4)
Glycolipids
166(3)
Conformational studies of cerebrosides
166(2)
Conformational studies of globosides
168(1)
Gangliosides
169(8)
Conformational studies of monosialogangliosides
170(4)
Conformational studies of di-, tri- and tetra-sialogangliosides
174(3)
Conformational studies of fucogangliosides
177(1)
Lipopolysaccharides
177(3)
Conformational studies
178(2)
Cyclic Oligosaccharides
180(11)
Cyclodextrins
180(1)
Conformation of cyclodextrins
181(1)
Conformation in the solid state
181(1)
Hydrogen bonding pattern in the solid state
181(1)
Computer modeling studies
181(1)
Other cyclic oligosaccharides
182(1)
Conformation of cyclosophorans
182(9)
Folding Patterns of Homopolysaccharides
191(32)
Introduction
191(2)
Representation of Polysaccharide Chain Conformation
193(1)
Helix Representation
193(2)
Conformational Energy Calculation and Preferred Conformation
195(17)
α-D-Glucans
195(1)
Flexibility of amylose helix
196(3)
Amylopectin
199(1)
(1→3)-α-D-Glucan
199(1)
β-Glucans
199(5)
Cellulose
204(1)
(1→3)-α-D-Glucan
205(2)
Mannans
207(1)
(1→4)-β-D-Mannan
207(1)
(1→3)-α-D-Mannan
208(1)
Xylans
208(1)
(1→4)-β-D-Xylan
208(2)
(1→3)-α-D-Xylan
210(1)
Galactans
210(1)
(1→4)-β-D-Galactans
211(1)
Alginic acid
212(1)
Linkage and Probable Conformations
212(1)
Randomly Coiled Polysaccharides
212(5)
Dimensions of freely rotating polysaccharide chain
213(1)
Unperturbed dimensions of polysaccharides
213(1)
Amylose
213(2)
Cellulose
215(2)
Xylan and mannan
217(1)
Shapes of Polysaccharides and Their Biological Significance
217(6)
Fiber Diffraction Analysis of Polysaccharides
223(32)
Introduction
223(1)
X-Ray Diffraction Analysis
223(2)
Computer Model Building
225(1)
General Remarks
226(1)
Structures of Polymonosaccharides
226(26)
Cellulose
226(1)
Cellulose I
227(1)
Cellulose II
227(3)
Cellulose III and IV
230(1)
Cellulose derivatives
230(1)
Chitin
230(1)
α-Chitin
230(1)
β-Chitin
231(1)
Mannan
232(1)
Mannan I
232(1)
Mannan II
232(1)
Amylose
232(2)
A- and B-Amylose
234(1)
Abortive models
234(1)
Correct models
235(3)
V-Amylose
238(1)
KOH-amylose complex
239(1)
Amylose derivatives
239(1)
(1→3)-α-D-Glucan
239(1)
Curdlan
239(3)
Curdlan I
242(1)
Curdlan III
242(3)
Curdlan II
245(1)
Xylan
245(1)
(1→3)-β-D-Xylan
245(1)
(1→4)-β-D-Xylan
245(1)
Pectin
245(1)
Sodium pectate
246(2)
Pectic acid
248(1)
Calcium pectate and pectinic acid
248(1)
Alginic acid
248(1)
Polymannuronic acid
248(1)
Polyguluronic acid
248(4)
Inferences
252(3)
Structures of Polyoligosaccharides
255(22)
Introduction
255(1)
Carrageenan
255(3)
ι-Carrageenan
255(2)
κ-Carrageenan
257(1)
Agarose
258(1)
Hyaluronan
258(5)
Four-fold helix
258(1)
Sodium hyaluronate (dry)
258(3)
Sodium hyaluronate (relaxed)
261(1)
Potassium hyaluronate (extended)
261(1)
Potassium hyaluronate (relaxed)
261(1)
Three-fold helix
261(1)
Sodium hyaluronate
261(2)
Calcium hyaluronate
263(1)
Double helix
263(1)
Sulfated Glycosaminoglycans
263(5)
Chondroitin sulfate
265(1)
Chondroitin 4-sulfate
265(1)
Dermatan 4-sulfate
265(3)
Keratan 6-sulfate
268(1)
Polysaccharides with Large Repeating Units
268(9)
Gellan
268(3)
Welan
271(1)
Xanthan
271(3)
Galactomannan
274(1)
Miscellaneous
274(3)
Peptidoglycans
277(26)
Introduction
277(1)
Primary Structure of Peptidoglycans
278(1)
The glycan strand
278(1)
The peptide moiety
278(1)
The Three-Dimensional Structure of Peptidoglycans
278(8)
Peptidoglycan Degradation Enzymes
286(5)
Lysozymes
286(1)
Interaction of saccharide ligands with lysozyme
287(2)
Comparison of the lysozyme-trisaccharide complexes
289(1)
Mechanism of action of lysozyme
290(1)
β-Lactam Antibiotics
291(12)
Conformation of β-lactam antibiotics
291(5)
Mechanism of action of β-lactam antibiotics
296(7)
Carbohydrate-Protein Interactions
303(52)
Introduction
303(1)
Characteristic Features of Saccharide-Protein Interactions
303(6)
Sugar binding pocket
303(2)
Hydrogen bonds in the protein-carbohydrate complexes
305(1)
Hydrophobic pocket in the sugar-binding site
306(1)
Metal ion binding
306(1)
Conformation of the saccharide ligands
307(1)
Saccharide-binding induced conformational alterations or cross-linking of proteins
308(1)
X-Ray Structure Data of Carbohydrate-Protein Complexes
309(46)
Periplasmic sugar binding proteins
309(1)
Arabinose binding protein (ABP)
309(2)
The galactose/glucose binding protein (GBP)
311(1)
The maltose binding protein (MBP)
311(1)
Plant lectins
311(1)
Con A
312(4)
Favin
316(1)
Pea lectin
316(1)
Lentil lectin
317(1)
Lathyrus ochrus isolectin (LOL lectin)
318(4)
Griffonia simplicifolia lectin (GS4)
322(1)
Erythrina corallodendron lectin (EcorL)
323(1)
Wheat germ agglutinin (WGA)
324(2)
Snowdrop lectin (GNA)
326(1)
Ricin
327(2)
Animal lectins and their sugar complexes
329(1)
C-type lectins
329(1)
Mammalian mannose-binding proteins (MMBP)
329(2)
S-type lectins (Gelectins)
331(2)
E-type selectins --- cell adhesion molecules
333(1)
Heparin and heparan sulfate complexes with fibroblast growth factor
333(1)
Bacterial and Rickettsial lectins
334(1)
LT-lactose complex
334(1)
CT-B-pentamer-GM1 pentasaccharide complex
335(2)
Viral lectins
337(1)
Influenza virus hemagglutinin
337(1)
Viral and cholera neuraminidases
337(2)
Antibody-carbohydrate complexes
339(1)
Enzyme-carbohydrate complexes
340(1)
Glycogen phosphorylase a and b
340(4)
α-Amylase
344(3)
Cellobiohydrolase I and II
347(8)
Index 355


Vallurupalli S. R. Rao is a Visiting Scientist in the Structural Glycobiology Section of the Laboratory of Experimental and Computational Biology at the National Cancer Institute, NIH, USA, and was formerly Professor and Chairman of the Molecular Biophysics Unit, Indian Institute of Science, Bangalore. Professor Rao is an elected fellow of the Indian Academy of Sciences and the Indian National Science Academy, a member of the editorial board of the International Journal of Carbohydrate Polymers, and has been an invited speaker at several international and national meetings., Pradman K. Qasba is head of the Structural Glycobiology Section of the Laboratory of Experimental and Computational Biology at the National Cancer Institute, NIH, USA. He received his Ph.D. degree in Pharmaceutical Synthetic Chemistry from Munich University, Germany, in 1965. He is currently investigating Golgi glycosyltransferases structure-function relationships, conformational preferences of their oligosaccharide substrates and sugar induced protein-protein interactions., Petety V. Balaji is currently Assistant Professor at the Biotechnology Center, Indian Institute of Technology, Bombay, India. After receiving his Ph.D. in 1991 he was a postdoctoral fellow in the Structural Glycobiology Section of the Laboratory of Experimental and Computational Biology at the National Cancer Institute, NIH, USA, where he carried out conformational analysis of N-linked oligosaccharides and structure and function studies of Golgi glycosyltransferases., Rengaswami Chandrasekaran is Professor of Structural Biochemistry in the Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, USA. Trained as an X-ray crystallographer, he earned his Ph.D. from the University of Madras, India. His research activities entail the study of the structure-function relationships in biopolymers elucidated by X-ray diffraction and computer modeling techniques. He has edited several books, authore