Muutke küpsiste eelistusi

On a Conjecture of E. M. Stein on the Hilbert Transform on Vector Fields [Pehme köide]

Edited by , Edited by
Teised raamatud teemal:
Teised raamatud teemal:
Let $v$ be a smooth vector field on the plane, that is a map from the plane to the unit circle. The authors study sufficient conditions for the boundedness of the Hilbert transform $\textrm{H}_{v, \epsilon }f(x) := \text{p.v.}\int_{-\epsilon}^{\epsilon} f(x-yv(x))\;\frac{dy}y$ where $\epsilon$ is a suitably chosen parameter, determined by the smoothness properties of the vector field. Table of Contents: Overview of principal results; Besicovitch set and Carleson's theorem; The Lipschitz Kakeya maximal function; The $L^2$ estimate; Almost orthogonality between annuli. (MEMO/205/965)
Preface vii
Chapter 1 Overview of principal results
1(6)
Chapter 2 Besicovitch set and Carleson's Theorem
7(4)
Besicovitch set
7(1)
The Kakeya maximal function
8(1)
Carleson's Theorem
8(1)
The weak L2 estimate in Theorem 1.15 is sharp
9(2)
Chapter 3 The Lipschitz Kakeya maximal function
11(16)
The weak L2 estimate
11(9)
An obstacle to an Lp estimate, for 1 < p < 2
20(1)
Bourgain's geometric condition
21(3)
Vector fields that are a function of one variable
24(3)
Chapter 4 The L2 estimate
27(24)
Definitions and principal Lemmas
27(4)
Truncation and an alternate model sum
31(3)
Proofs of Lemmata
34(17)
Chapter 5 Almost orthogonality between annuli
51
Application of the Fourier localization Lemma
51(13)
The Fourier localization estimate
64(7)
References
71