|
|
1 | (16) |
|
1.1 Ways to Express Continuity |
|
|
1 | (3) |
|
|
4 | (7) |
|
1.3 Enriched Functional Analysis |
|
|
11 | (6) |
|
|
17 | (36) |
|
|
17 | (3) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (4) |
|
2.2.1 Anatomy of Functions |
|
|
20 | (1) |
|
2.2.2 Function Related Concepts |
|
|
21 | (3) |
|
|
24 | (3) |
|
2.3.1 Constructions with Indexed Families of Sets |
|
|
24 | (2) |
|
2.3.2 Images and Preimages of Families |
|
|
26 | (1) |
|
|
27 | (4) |
|
|
27 | (1) |
|
2.4.2 Ordered and Preordered Sets |
|
|
27 | (2) |
|
2.4.3 Ordinals and Transfinite Induction |
|
|
29 | (2) |
|
2.5 The Class of All Sets |
|
|
31 | (5) |
|
2.5.1 Getting Around Russell's Paradox |
|
|
31 | (1) |
|
2.5.2 The Class S of Functions Between Sets |
|
|
32 | (2) |
|
2.5.3 Factorizations of Functions |
|
|
34 | (2) |
|
2.6 Basic Algebraic Structures |
|
|
36 | (5) |
|
2.6.1 Monoid Related Structures |
|
|
36 | (3) |
|
|
39 | (2) |
|
2.7 Vector Spaces and Linear Mappings |
|
|
41 | (12) |
|
2.7.1 Vector Space Concept |
|
|
41 | (4) |
|
2.7.2 Linear Mapping Concept |
|
|
45 | (1) |
|
2.7.3 Factorization of Linear Mappings |
|
|
46 | (1) |
|
2.7.4 Quotient Vector Spaces |
|
|
46 | (1) |
|
2.7.5 Cartesian Products of Vector Spaces |
|
|
47 | (1) |
|
2.7.6 Vector Spaces of Linear Mappings |
|
|
48 | (1) |
|
2.7.7 Interdependence of Real and Complex Linear Functionals |
|
|
48 | (1) |
|
|
49 | (4) |
|
3 Continuity Enabling Structures |
|
|
53 | (40) |
|
|
53 | (10) |
|
3.1.1 Convergent Sequences in Real Intervals |
|
|
53 | (2) |
|
|
55 | (2) |
|
3.1.3 Filter Convergence in R |
|
|
57 | (2) |
|
3.1.4 Completeness of the Real Line |
|
|
59 | (1) |
|
3.1.5 Continuous Mappings Between Real Intervals |
|
|
60 | (3) |
|
|
63 | (12) |
|
|
63 | (1) |
|
3.2.2 Metric Space Concept |
|
|
64 | (1) |
|
3.2.3 Auxiliary Concepts for Metric Spaces |
|
|
65 | (1) |
|
3.2.4 Convergence in Metric Spaces |
|
|
66 | (1) |
|
3.2.5 Complete Metric Spaces |
|
|
67 | (3) |
|
3.2.6 Continuous Mappings Between Metric Spaces |
|
|
70 | (1) |
|
3.2.7 Cartesian Products of Metric Spaces |
|
|
71 | (1) |
|
3.2.8 Modulated Continuous Mappings |
|
|
72 | (3) |
|
|
75 | (6) |
|
3.3.1 Topological Space Concept |
|
|
75 | (1) |
|
3.3.2 Closed Sets, Closure and Interior |
|
|
76 | (1) |
|
3.3.3 Convergence in Topological Spaces |
|
|
77 | (1) |
|
3.3.4 Continuous Mappings Between Topological Spaces |
|
|
78 | (3) |
|
|
81 | (12) |
|
3.4.1 Convergence Space Concept |
|
|
81 | (4) |
|
3.4.2 Adherence and Closure |
|
|
85 | (1) |
|
3.4.3 Assembling Functions and Assembled Filters |
|
|
86 | (1) |
|
3.4.4 Open Sets in a Convergence Space |
|
|
86 | (1) |
|
3.4.5 Continuous Mappings Between Convergence Spaces |
|
|
87 | (6) |
|
4 Construction of New Spaces |
|
|
93 | (28) |
|
4.1 New Spaces via Initial Lifts |
|
|
93 | (9) |
|
|
93 | (2) |
|
|
95 | (2) |
|
4.1.3 Subspaces, Embeddings, and Factorizations |
|
|
97 | (1) |
|
4.1.4 Application to Topological Spaces |
|
|
98 | (1) |
|
4.1.5 T-Initial Implies C-Initial |
|
|
99 | (1) |
|
4.1.6 Fibers of Structures |
|
|
99 | (3) |
|
4.2 New Spaces via Final Lifts |
|
|
102 | (6) |
|
|
102 | (1) |
|
|
103 | (2) |
|
4.2.3 Quotient Mappings and Factorizations |
|
|
105 | (1) |
|
4.2.4 T-Coproducts and Quotients |
|
|
106 | (2) |
|
4.3 Topological Reflection of a Convergence Space |
|
|
108 | (4) |
|
4.3.1 Topological Convergence Revisited |
|
|
108 | (1) |
|
4.3.2 T-Reflection Theorem |
|
|
109 | (1) |
|
4.3.3 Reflective Subclasses |
|
|
110 | (2) |
|
|
112 | (5) |
|
4.4.1 Continuous Convergence |
|
|
112 | (2) |
|
4.4.2 Cartesian Monoidal Laws |
|
|
114 | (1) |
|
4.4.3 Cartesian Exponential Laws |
|
|
114 | (3) |
|
4.5 Pseudopowers and Cubes |
|
|
117 | (4) |
|
4.5.1 Simple Convergence and Pseudopowers |
|
|
117 | (1) |
|
|
117 | (1) |
|
4.5.3 Uniform Convergence |
|
|
118 | (3) |
|
5 Various Kinds of Spaces |
|
|
121 | (54) |
|
|
121 | (10) |
|
5.1.1 Regular Convergence |
|
|
122 | (1) |
|
5.1.2 Hausdorff Convergence |
|
|
123 | (1) |
|
|
124 | (1) |
|
5.1.4 Choquet Space Concept |
|
|
125 | (2) |
|
|
127 | (1) |
|
5.1.6 Pivot-Embedded C-Space Concept |
|
|
128 | (3) |
|
|
131 | (4) |
|
5.2.1 Tychonoff Space Concept |
|
|
131 | (1) |
|
5.2.2 Zero-Sets and Cozero-Sets |
|
|
132 | (1) |
|
5.2.3 Factorization of Tychonoff Mappings |
|
|
133 | (2) |
|
|
135 | (10) |
|
5.3.1 Compactness Concept |
|
|
135 | (1) |
|
5.3.2 Compactness via Coverings |
|
|
136 | (1) |
|
5.3.3 Basic Properties of Compact Spaces |
|
|
137 | (1) |
|
5.3.4 Continuous Mappings on Compact Domains |
|
|
138 | (1) |
|
5.3.5 Compact Spaces and Real Intervals |
|
|
139 | (1) |
|
5.3.6 Finite Dimensional Compact Spaces |
|
|
140 | (1) |
|
5.3.7 Attainment of Supremum |
|
|
140 | (1) |
|
5.3.8 Mapping Spaces with Compact Domain |
|
|
141 | (1) |
|
5.3.9 Stone-Weierstrass Approximation |
|
|
142 | (3) |
|
|
145 | (5) |
|
5.4.1 Normal Space Concept |
|
|
146 | (1) |
|
5.4.2 Normality Implies Urysohn Separation |
|
|
146 | (1) |
|
5.4.3 Urysohn Separation Implies Tietze Extension |
|
|
147 | (2) |
|
5.4.4 Tietze Extension Implies Normality |
|
|
149 | (1) |
|
5.4.5 Finite Partitions of Unity |
|
|
149 | (1) |
|
5.4.6 Normality of Compact Spaces |
|
|
149 | (1) |
|
|
150 | (8) |
|
5.5.1 Locally Compact Concept |
|
|
150 | (1) |
|
5.5.2 Compact-Open Topology |
|
|
151 | (1) |
|
5.5.3 Compactwise Uniform Convergence |
|
|
152 | (1) |
|
5.5.4 Locally Compact Topological Spaces |
|
|
152 | (1) |
|
5.5.5 Locally Compact Coreflection |
|
|
153 | (1) |
|
5.5.6 Countability and Compactness |
|
|
154 | (1) |
|
5.5.7 Compactly Layered Spaces |
|
|
154 | (1) |
|
5.5.8 Topological Spaces of Ordinals |
|
|
155 | (3) |
|
|
158 | (4) |
|
5.6.1 Connected and Disconnected Spaces |
|
|
158 | (1) |
|
5.6.2 Sufficient Conditions |
|
|
159 | (1) |
|
5.6.3 Monotonic Homeomorphisms |
|
|
160 | (1) |
|
5.6.4 Connected Components |
|
|
161 | (1) |
|
5.6.5 Totally Disconnected Spaces |
|
|
161 | (1) |
|
5.7 Zero-Dimensional Spaces |
|
|
162 | (4) |
|
5.7.1 Zero-Dimensional Space Concept |
|
|
162 | (1) |
|
|
163 | (1) |
|
5.7.3 Cantor Representation of the Cube S(N, B) |
|
|
163 | (3) |
|
|
166 | (2) |
|
5.8.1 Baire Space Concept |
|
|
166 | (1) |
|
5.8.2 Compact Spaces Are Baire |
|
|
167 | (1) |
|
5.8.3 Locally Compact T-Spaces Are Baire |
|
|
167 | (1) |
|
5.8.4 Complete Metric Spaces Are Baire |
|
|
168 | (1) |
|
|
168 | (7) |
|
|
169 | (1) |
|
|
170 | (1) |
|
5.9.3 Front Dense Mappings |
|
|
171 | (1) |
|
5.9.4 Front Closed Embeddings |
|
|
171 | (1) |
|
|
172 | (3) |
|
6 Fundamentals of Linear Continuity |
|
|
175 | (76) |
|
|
175 | (6) |
|
6.1.1 Variable Scalar Field |
|
|
175 | (1) |
|
|
176 | (1) |
|
6.1.3 Gauged Spaces and Mappings |
|
|
176 | (2) |
|
6.1.4 Gauged Spaces via Initial Lifts |
|
|
178 | (1) |
|
6.1.5 Gauged Spaces via Final Lifts |
|
|
179 | (1) |
|
6.1.6 Gauged Quotient Mappings |
|
|
179 | (2) |
|
6.2 Hahn-Banach Extension and Separation |
|
|
181 | (7) |
|
6.2.1 Convex Sets and Semiballs |
|
|
181 | (2) |
|
6.2.2 Heminorms and Hemiballs |
|
|
183 | (1) |
|
6.2.3 Dominated Linear Extensions |
|
|
184 | (2) |
|
|
186 | (2) |
|
6.3 Gauged Spaces as Topological Vector Spaces |
|
|
188 | (10) |
|
6.3.1 Topological Vector Spaces |
|
|
188 | (1) |
|
6.3.2 Continuity Criteria for Seminorms |
|
|
188 | (1) |
|
6.3.3 Semiballs and Hubbed Spaces |
|
|
189 | (2) |
|
6.3.4 GV-Functionals: Extension and Separation |
|
|
191 | (1) |
|
6.3.5 Weakly Gauged Spaces |
|
|
192 | (1) |
|
6.3.6 Separated Gauged Spaces |
|
|
193 | (1) |
|
6.3.7 Translation-Invariant Metrics |
|
|
193 | (2) |
|
6.3.8 Frechet Space Concept |
|
|
195 | (2) |
|
6.3.9 Metrizable Inversion Theorem |
|
|
197 | (1) |
|
6.4 Normed Spaces Revisited |
|
|
198 | (8) |
|
6.4.1 Normed Spaces as TV-Spaces |
|
|
198 | (1) |
|
6.4.2 Linear Continuous Mappings Between Normed Spaces |
|
|
199 | (1) |
|
|
199 | (1) |
|
6.4.4 Absolutely Convergent Series |
|
|
200 | (1) |
|
6.4.5 Linear Homeomorphism Not Isolated |
|
|
201 | (1) |
|
|
202 | (1) |
|
6.4.7 Normed Bidual Spaces |
|
|
203 | (3) |
|
6.5 CV-Spaces and CV-Mappings |
|
|
206 | (3) |
|
6.5.1 Convergence Vector Spaces |
|
|
206 | (2) |
|
|
208 | (1) |
|
|
208 | (1) |
|
6.5.4 Locally Convex CV-Spaces |
|
|
208 | (1) |
|
6.6 Parapowers, Paraduals and Cubes |
|
|
209 | (8) |
|
6.6.1 Parapowers C[ X, F] and Cubes S[ J, F] |
|
|
209 | (1) |
|
6.6.2 CV-Powers, CV-Duals, and Paraduals |
|
|
210 | (2) |
|
6.6.3 Preliminaries About Standard CV Constructions |
|
|
212 | (2) |
|
|
214 | (1) |
|
6.6.5 Finite Dimensional CV-Spaces |
|
|
214 | (1) |
|
6.6.6 Completeness for CV-Spaces |
|
|
215 | (2) |
|
6.7 Equicontinuity and Compactness |
|
|
217 | (11) |
|
6.7.1 Equicontinuous Subsets |
|
|
217 | (1) |
|
6.7.2 Equicontinuity and Simple Convergence |
|
|
218 | (1) |
|
6.7.3 Compact Subspaces of Paraduals |
|
|
219 | (1) |
|
6.7.4 Equicontinuous Subsets of Parapowers |
|
|
219 | (1) |
|
6.7.5 Bounded Sets in CV-Spaces |
|
|
220 | (1) |
|
6.7.6 Which Gauged Spaces Are Locally Compact? |
|
|
221 | (1) |
|
6.7.7 CV-Duals of Gauged Spaces |
|
|
222 | (1) |
|
6.7.8 Polar Sets in a DGV-Space |
|
|
222 | (2) |
|
6.7.9 Representation of Separated and Complete G V-Spaces |
|
|
224 | (1) |
|
6.7.10 Extreme Subsets and Extreme Points |
|
|
225 | (1) |
|
6.7.11 Krein-Milman Theorem |
|
|
226 | (2) |
|
6.8 Riesz-Radon Representation |
|
|
228 | (23) |
|
|
229 | (1) |
|
|
230 | (1) |
|
6.8.3 Bounded Measures and Jordan Decomposition |
|
|
231 | (2) |
|
|
233 | (2) |
|
|
235 | (2) |
|
6.8.6 Measures via Premeasures |
|
|
237 | (1) |
|
6.8.7 Decomposition of M-Valued Linear Functionals |
|
|
238 | (2) |
|
6.8.8 Measures Determined by Nonnegative CV-Functionals |
|
|
240 | (1) |
|
6.8.9 Measures Determined by CV-Functionals |
|
|
241 | (2) |
|
6.8.10 Two Riesz-Radon Representations |
|
|
243 | (1) |
|
6.8.11 Approximation by Elementary Functionals |
|
|
244 | (7) |
|
7 Basic Categorical Concepts |
|
|
251 | (76) |
|
|
251 | (4) |
|
|
251 | (1) |
|
7.1.2 Examples of Categories |
|
|
252 | (1) |
|
|
253 | (1) |
|
7.1.4 Opposite Categories |
|
|
254 | (1) |
|
|
255 | (5) |
|
|
255 | (2) |
|
7.2.2 Functors Induced by Objects |
|
|
257 | (1) |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
260 | (7) |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
263 | (1) |
|
7.3.5 Retractions and Sections |
|
|
263 | (2) |
|
|
265 | (1) |
|
7.3.7 Epis via Coseparators |
|
|
265 | (2) |
|
7.4 Natural Transformations |
|
|
267 | (7) |
|
7.4.1 Natural Transformation Concept |
|
|
267 | (1) |
|
7.4.2 Algebraic Operations as Natural Transformations |
|
|
268 | (1) |
|
7.4.3 Reincarnation Transformation |
|
|
269 | (1) |
|
7.4.4 Functors of Several Variables |
|
|
270 | (1) |
|
|
270 | (1) |
|
7.4.6 Evaluation as Natural Transformation |
|
|
271 | (1) |
|
7.4.7 Exponential Laws for S |
|
|
272 | (2) |
|
|
274 | (13) |
|
7.5.1 Adjoint Functor Concept |
|
|
274 | (3) |
|
7.5.2 Adjunctions Associated with S-Powers |
|
|
277 | (1) |
|
7.5.3 A Right (and Left) Adjoint Underlying Functor |
|
|
278 | (1) |
|
7.5.4 Free Vector Space Functor as Left Adjoint |
|
|
278 | (1) |
|
7.5.5 Cube Functor as Right Adjoint |
|
|
278 | (1) |
|
7.5.6 Adjoint Functor Properties |
|
|
279 | (2) |
|
7.5.7 Reflective Subcategories |
|
|
281 | (1) |
|
7.5.8 Coreflective Subcategories |
|
|
281 | (1) |
|
|
282 | (1) |
|
7.5.10 Equivalence Functors and Equivalent Categories |
|
|
283 | (4) |
|
|
287 | (14) |
|
7.6.1 Limit Sources for Functors |
|
|
287 | (2) |
|
7.6.2 Cartesian Products in S |
|
|
289 | (1) |
|
7.6.3 Cartesian Product of Arrows |
|
|
289 | (1) |
|
7.6.4 Equalizers as Limit Sources |
|
|
290 | (1) |
|
|
291 | (1) |
|
|
292 | (1) |
|
7.6.7 Limits for Nonsmall Intersection Functors |
|
|
293 | (1) |
|
7.6.8 Well-Powered and Cowell-Powered Categories |
|
|
294 | (1) |
|
7.6.9 Limit Source Properties |
|
|
295 | (1) |
|
7.6.10 Categorical Completeness Criterion |
|
|
296 | (1) |
|
7.6.11 Associated Down-Directed Functors |
|
|
297 | (1) |
|
7.6.12 Right Adjoints Preserve Limit Sources |
|
|
298 | (1) |
|
7.6.13 Limit Sources That Preserve Monos |
|
|
299 | (2) |
|
|
301 | (5) |
|
7.7.1 Colimit Sinks for Functors |
|
|
301 | (1) |
|
|
302 | (1) |
|
|
303 | (1) |
|
|
303 | (1) |
|
7.7.5 Colimit Sink Properties |
|
|
304 | (2) |
|
7.8 Concrete Categories and Lifting Categories |
|
|
306 | (9) |
|
7.8.1 The Concept Concrete Category |
|
|
306 | (1) |
|
7.8.2 Initial Sources and Final Sinks in Concrete Categories |
|
|
307 | (1) |
|
7.8.3 Initial Lifts Exist Iff Final Lifts Exist |
|
|
308 | (1) |
|
|
309 | (1) |
|
7.8.5 Lifting Functors Are Right Adjoint |
|
|
310 | (1) |
|
7.8.6 Further Lifting Properties |
|
|
310 | (1) |
|
7.8.7 Preservation of Initial Monosources |
|
|
311 | (1) |
|
7.8.8 Preservation of Final Episinks |
|
|
312 | (3) |
|
7.9 Dicomplete Categories |
|
|
315 | (4) |
|
7.9.1 Dicompleteness Concept |
|
|
315 | (1) |
|
7.9.2 Dicompleteness of Lifting Categories |
|
|
316 | (1) |
|
7.9.3 Reflective Subcategories Inherit Dicompleteness |
|
|
316 | (2) |
|
7.9.4 Coreflective Subcategories Inherit Dicompleteness |
|
|
318 | (1) |
|
7.10 Factorization in Dicomplete Categories |
|
|
319 | (8) |
|
7.10.1 Epi-Determined Monos |
|
|
319 | (2) |
|
7.10.2 Canonical Factorizations |
|
|
321 | (2) |
|
7.10.3 Preservation of Xepi and Dmono |
|
|
323 | (1) |
|
7.10.4 The Classes Epi and Dmono in RC |
|
|
324 | (3) |
|
|
327 | (10) |
|
8.1 Foundational Categories |
|
|
327 | (10) |
|
8.1.1 Foundational Category Concept |
|
|
327 | (1) |
|
8.1.2 Cartesian Monoidal Laws |
|
|
328 | (2) |
|
8.1.3 Cartesian Exponential Laws |
|
|
330 | (1) |
|
8.1.4 Adjunctions Implied by Exponential Laws |
|
|
331 | (1) |
|
8.1.5 Extended Exponential Laws |
|
|
332 | (1) |
|
8.1.6 Enriched Categories and Functors |
|
|
332 | (1) |
|
8.1.7 Enriched Adjunctions and Powered Subcategories |
|
|
332 | (5) |
|
9 Reflective Subcategories of C |
|
|
337 | (14) |
|
9.1 Tools for Creating Epireflective Subcategories |
|
|
337 | (3) |
|
9.1.1 Epireflection Via Adjunction |
|
|
338 | (1) |
|
9.1.2 Enriched Epireflection Via Adjunction |
|
|
339 | (1) |
|
9.2 Categories of Pivot-Regular Spaces |
|
|
340 | (4) |
|
9.2.1 Pivot-Regular Space Concept |
|
|
340 | (1) |
|
9.2.2 Pivot-Regular Properties |
|
|
340 | (1) |
|
9.2.3 Particular Pivot-Regular Categories |
|
|
341 | (1) |
|
9.2.4 Extremal Monosources |
|
|
342 | (2) |
|
9.3 Categories of Pivot-Biregular Spaces |
|
|
344 | (2) |
|
9.3.1 Pivot-Biregular Spaces |
|
|
344 | (1) |
|
9.3.2 Particular Pivot-Biregular Categories |
|
|
345 | (1) |
|
9.4 Categories of Pivot-Embedded Spaces |
|
|
346 | (5) |
|
9.4.1 Pivot-Embedded Space Concept |
|
|
346 | (1) |
|
|
347 | (1) |
|
9.4.3 Epis in Pivot-Embedded Subcategories |
|
|
347 | (1) |
|
9.4.4 The Class Dmono(PC) |
|
|
348 | (1) |
|
9.4.5 Particular Pivot-Embedded Categories |
|
|
348 | (3) |
|
|
351 | (18) |
|
10.1 Categories of Continuously Algebraic Theory |
|
|
351 | (8) |
|
10.1.1 Convergence Vector Space Concept Revisited |
|
|
352 | (1) |
|
|
352 | (1) |
|
10.1.3 CV as Two-fold Concrete Category |
|
|
353 | (1) |
|
10.1.4 Creation of Parapowers |
|
|
354 | (1) |
|
10.1.5 Convergence Rings and Convergence Algebras |
|
|
354 | (2) |
|
10.1.6 Paradual Adjunctions |
|
|
356 | (3) |
|
|
359 | (7) |
|
10.2.1 Enriched Duality via R |
|
|
359 | (3) |
|
10.2.2 Reincarnation Mapping of a Binz Space |
|
|
362 | (1) |
|
10.2.3 Enriched Duality via C |
|
|
363 | (1) |
|
10.2.4 Convergence Probes |
|
|
363 | (2) |
|
10.2.5 Enriched Duality via H |
|
|
365 | (1) |
|
10.3 Further Enriched Dualities |
|
|
366 | (3) |
|
10.3.1 Enriched Duality via B |
|
|
366 | (1) |
|
10.3.2 The Category of Convergence Lattices |
|
|
366 | (1) |
|
10.3.3 Enriched Duality via S |
|
|
367 | (2) |
|
|
369 | (24) |
|
11.1 Dicompleteness of CV |
|
|
369 | (8) |
|
11.1.1 Limit Sources in CV |
|
|
369 | (2) |
|
|
371 | (1) |
|
11.1.3 Coequalizers and Quotients in CV |
|
|
372 | (1) |
|
11.1.4 Finite Coproducts in CV |
|
|
373 | (1) |
|
11.1.5 An Up-Directed Colimit of Finite Products |
|
|
374 | (2) |
|
11.1.6 General Coproducts in CV |
|
|
376 | (1) |
|
11.1.7 Final Episinks and Colimits |
|
|
376 | (1) |
|
|
376 | (1) |
|
11.2 CV-Powers and Parapowers |
|
|
377 | (5) |
|
11.2.1 Parapower Functors into CV |
|
|
378 | (1) |
|
|
378 | (2) |
|
11.2.3 CV Enriched Adjunctions |
|
|
380 | (1) |
|
11.2.4 CV-Enriched Epireflection |
|
|
380 | (1) |
|
11.2.5 The CV-Dual Functor |
|
|
381 | (1) |
|
|
382 | (5) |
|
11.3.1 Paratensor Product Spaces |
|
|
382 | (1) |
|
11.3.2 The Paratensor Functor |
|
|
383 | (2) |
|
11.3.3 Adjunctions via Paratensors |
|
|
385 | (1) |
|
11.3.4 The Free CV-Space Functor |
|
|
386 | (1) |
|
|
387 | (6) |
|
11.4.1 Multilinear Mappings |
|
|
387 | (1) |
|
11.4.2 Tensor Product Spaces |
|
|
388 | (1) |
|
11.4.3 Tensor Product Functors |
|
|
389 | (1) |
|
11.4.4 Tensor Exponential Law |
|
|
390 | (1) |
|
11.4.5 Overview of CV as Category |
|
|
391 | (2) |
|
12 Reflective Subcategories of CV |
|
|
393 | (10) |
|
12.1 Categories of Gauged Spaces |
|
|
393 | (1) |
|
12.1.1 GV Rigidly Reflective in CV |
|
|
393 | (1) |
|
12.1.2 sGV Quotient Reflective in GV |
|
|
394 | (1) |
|
|
394 | (6) |
|
12.2.1 Characterization of eCV-Space |
|
|
394 | (1) |
|
12.2.2 eCV Enriched Epireflective |
|
|
395 | (1) |
|
12.2.3 Exponential Laws in eCV |
|
|
396 | (1) |
|
|
396 | (1) |
|
12.2.5 Tensor Products in eCV |
|
|
397 | (1) |
|
12.2.6 Initial Lifts over V Exist for Monosources |
|
|
397 | (1) |
|
12.2.7 sGV Rigidly Reflective in eCV |
|
|
398 | (1) |
|
|
398 | (1) |
|
12.2.9 Rmono, Epi, and Dmono in eCV and sGV |
|
|
399 | (1) |
|
|
400 | (3) |
|
|
400 | (1) |
|
12.3.2 Exponential Laws in oCV |
|
|
401 | (1) |
|
12.3.3 Completeness of oCV-Spaces |
|
|
401 | (1) |
|
|
402 | (1) |
|
13 Linear Continuous Representations |
|
|
403 | (14) |
|
13.1 Gauged Reflection of Paraduals |
|
|
403 | (5) |
|
13.1.1 Bounded Mappings in Paraduals |
|
|
403 | (1) |
|
13.1.2 When the Exponent Space Is Compact |
|
|
404 | (1) |
|
13.1.3 The Carrier of a Continuous Seminorm |
|
|
404 | (3) |
|
13.1.4 Representation of ACX as a Union |
|
|
407 | (1) |
|
13.1.5 Gauged Reflection of a Paradual |
|
|
408 | (1) |
|
|
408 | (9) |
|
13.2.1 Reflexiveness Concept |
|
|
408 | (1) |
|
13.2.2 Paraduals Are Reflexive |
|
|
409 | (2) |
|
13.2.3 Subspaces That Inherit Reflexiveness |
|
|
411 | (1) |
|
13.2.4 cGV Epireflective in sGV and oCV |
|
|
412 | (1) |
|
13.2.5 Extended Riesz-Radon Representation |
|
|
412 | (5) |
|
|
417 | (30) |
|
|
418 | (8) |
|
14.1.1 Averaging Mapping Concept |
|
|
418 | (1) |
|
14.1.2 AV-Mappings for R-Valued Curves |
|
|
419 | (3) |
|
14.1.3 R-Valued Curves and Paths |
|
|
422 | (2) |
|
14.1.4 Primary and Active Paths |
|
|
424 | (2) |
|
14.2 The Fundamental Isomorphism |
|
|
426 | (12) |
|
14.2.1 Spaces of AV-Mappings |
|
|
426 | (1) |
|
14.2.2 Join of AV-Mappings |
|
|
427 | (2) |
|
14.2.3 Affine and Piecewise Affine Mappings |
|
|
429 | (2) |
|
14.2.4 Piecewise Simple AV-Mappings |
|
|
431 | (1) |
|
14.2.5 Establishment of the Fundamental Isomorphism |
|
|
432 | (1) |
|
14.2.6 E-Valued Curves and Paths |
|
|
433 | (1) |
|
|
434 | (4) |
|
14.3 Calculus of Vector-to-Vector Mappings |
|
|
438 | (9) |
|
14.3.1 Tangentful Subspaces |
|
|
438 | (1) |
|
14.3.2 C1-Mappings on Vector Domains |
|
|
439 | (2) |
|
14.3.3 Quasiprimary Mappings |
|
|
441 | (1) |
|
14.3.4 Difference Factorizers |
|
|
442 | (1) |
|
14.3.5 Vector to Vector Cn-Mappings |
|
|
443 | (4) |
Supplementary Reading |
|
447 | (4) |
References |
|
451 | (2) |
Index |
|
453 | |