|
1 Introduction: A Historical Journey |
|
|
1 | (6) |
|
|
7 | (98) |
|
|
9 | (10) |
|
|
9 | (3) |
|
2.2 Families of Continuous Nowhere Differentiable Functions |
|
|
12 | (1) |
|
2.3 The Denjoy--Young--Saks Theorem |
|
|
12 | (3) |
|
2.4 Series of Continuous Functions |
|
|
15 | (1) |
|
|
16 | (3) |
|
3 Weierstrass-Type Functions I |
|
|
19 | (32) |
|
|
19 | (3) |
|
3.2 General Properties of Wp,a,b,θ |
|
|
22 | (2) |
|
3.3 Differentiability of Wp,a,b,θ (in the Infinite Sense) |
|
|
24 | (2) |
|
|
26 | (1) |
|
|
27 | (8) |
|
|
31 | (2) |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
36 | (2) |
|
|
38 | (1) |
|
|
39 | (7) |
|
|
46 | (2) |
|
3.11 The Method of Baouche--Dubuc |
|
|
48 | (1) |
|
|
49 | (2) |
|
4 Takagi--van der Waerden-Type Functions I |
|
|
51 | (14) |
|
|
51 | (5) |
|
|
56 | (2) |
|
|
58 | (3) |
|
4.4 Differentiability of a Class of Takagi Functions |
|
|
61 | (4) |
|
5 Bolzano-Type Functions I |
|
|
65 | (34) |
|
5.1 The Bolzano-Type Function |
|
|
65 | (4) |
|
5.2 Q-Representation of Numbers |
|
|
69 | (4) |
|
5.2.1 Continuity of Functions Given via Q-Representation |
|
|
70 | (1) |
|
5.2.2 Bolzano-Type Functions Defined via Q-Representation |
|
|
71 | (2) |
|
5.3 Examples of Bolzano-Type Functions |
|
|
73 | (11) |
|
|
73 | (1) |
|
5.3.2 The Kiesswetter Function |
|
|
73 | (6) |
|
5.3.3 The Okamoto Function |
|
|
79 | (5) |
|
5.4 Continuity of Functions Given by Arithmetic Formulas |
|
|
84 | (1) |
|
|
85 | (1) |
|
5.6 The Pratsiovytyi--Vasylenko Functions |
|
|
86 | (1) |
|
|
87 | (2) |
|
5.8 Wunderlich--Bush--Wen Function |
|
|
89 | (2) |
|
|
91 | (2) |
|
|
93 | (6) |
|
|
99 | (6) |
|
|
99 | (3) |
|
|
102 | (3) |
|
Part II Topological Methods |
|
|
105 | (26) |
|
7 Baire Category Approach |
|
|
107 | (24) |
|
7.1 Metric Spaces and First Baire Category |
|
|
107 | (1) |
|
7.2 The Banach--Jarnik--Mazurkiewicz Theorem |
|
|
108 | (5) |
|
7.3 Typical Functions in the Disk Algebra |
|
|
113 | (2) |
|
7.4 The Jarnik--Marcinkiewicz Theorems |
|
|
115 | (6) |
|
|
121 | (3) |
|
7.6 The Banach--Mazurkiewicz Theorem Revisited |
|
|
124 | (3) |
|
7.7 The Structure of ND(I) |
|
|
127 | (4) |
|
|
131 | (124) |
|
8 Weierstrass-Type Functions II |
|
|
133 | (54) |
|
|
133 | (1) |
|
|
134 | (9) |
|
8.3 Baouche--Dubuc Method |
|
|
143 | (2) |
|
8.4 Kairies--Girgensohn Method |
|
|
145 | (12) |
|
8.4.1 A System of Functional Equations |
|
|
145 | (1) |
|
8.4.2 The Faber--Schauder Basis of C(I) |
|
|
146 | (3) |
|
8.4.3 Nowhere Differentiability and the Schauder Coefficients |
|
|
149 | (2) |
|
8.4.4 Schauder Coefficients of Solutions of a System of Functional Equations |
|
|
151 | (3) |
|
8.4.5 Nowhere Differentiability of W1,a,b,θ for ab ≥ 1, b N2 |
|
|
154 | (3) |
|
8.5 Weierstrass-Type Functions from a General Point of View |
|
|
157 | (4) |
|
|
161 | (10) |
|
|
171 | (15) |
|
8.7.1 Nowhere Differentiability of the Weierstrass-Type Functions: Finite One-Sided Derivatives |
|
|
171 | (3) |
|
8.7.2 Knot Points of Weierstrass-Type Functions |
|
|
174 | (4) |
|
8.7.3 Nowhere Differentiability of Weierstrass-Type Functions: Infinite Derivatives |
|
|
178 | (8) |
|
|
186 | (1) |
|
9 Takagi--van der Waerden-Type Functions II |
|
|
187 | (16) |
|
|
187 | (1) |
|
|
187 | (4) |
|
9.3 Infinite Unilateral Derivatives of T1/2,2,0 |
|
|
191 | (7) |
|
9.4 Proof of Theorem 9.3.4 |
|
|
198 | (2) |
|
9.5 The Case of Normal Numbers |
|
|
200 | (3) |
|
10 Bolzano-Type Functions II |
|
|
203 | (6) |
|
10.1 Bolzano-Type Functions |
|
|
203 | (6) |
|
|
209 | (36) |
|
11.1 Morse's Besicovitch Function |
|
|
209 | (11) |
|
|
209 | (3) |
|
11.1.2 A Class of Continuous Functions and Its Properties |
|
|
212 | (1) |
|
11.1.3 A New Function ƒ for Every ƒ |
|
|
213 | (4) |
|
11.1.4 A Besicovitch--Morse Function |
|
|
217 | (3) |
|
11.2 Singh's Besicovitch Function |
|
|
220 | (15) |
|
11.2.1 A Representation of Numbers |
|
|
220 | (4) |
|
11.2.2 Definition of Singh's Besicovitch Function |
|
|
224 | (2) |
|
|
226 | (2) |
|
11.2.4 Nowhere Differentiability of S4 |
|
|
228 | (7) |
|
11.3 BM(I) Is Residual in a Certain Subspace of C(I) |
|
|
235 | (10) |
|
12 Linear Spaces of Nowhere Differentiable Functions |
|
|
245 | (10) |
|
|
245 | (1) |
|
12.2 c-Lineability of ND∞(R) |
|
|
246 | (2) |
|
12.3 Spaceability of ND±(I) |
|
|
248 | (7) |
|
|
248 | (1) |
|
12.3.2 Auxiliary Functions |
|
|
249 | (1) |
|
12.3.3 The Closed Linear Subspace E ⊂ ND±(I) |
|
|
250 | (5) |
|
|
255 | (10) |
|
|
257 | (8) |
|
|
257 | (1) |
|
|
258 | (3) |
|
13.3 Differentiability of the Riemann Function |
|
|
261 | (4) |
|
|
265 | (14) |
|
A.1 Cantor Representation |
|
|
265 | (1) |
|
A.2 Harmonic and Holomorphic Functions |
|
|
266 | (2) |
|
|
268 | (2) |
|
|
270 | (1) |
|
A.5 Poisson Summation Formula |
|
|
270 | (1) |
|
A.6 Legendre, Jacobi, and Kronecker Symbols |
|
|
271 | (2) |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
275 | (4) |
|
Appendix B List of Symbols |
|
|
279 | (4) |
|
|
279 | (1) |
|
B.2 Symbols in Individual Chapters |
|
|
280 | (3) |
|
Appendix C List of Problems |
|
|
283 | (2) |
List of Figures |
|
285 | (2) |
References |
|
287 | (10) |
Index |
|
297 | |