1 Introduction |
|
1 | (18) |
|
1.1 Nonholonomic Systems via Underactuated Systems |
|
|
1 | (2) |
|
|
3 | (4) |
|
1.2.1 First- and Second-Order Nonholonomic Constraints |
|
|
3 | (2) |
|
1.2.2 Kinematic and Dynamics Models |
|
|
5 | (2) |
|
1.3 Control Design and Analysis Problems |
|
|
7 | (1) |
|
1.4 Objective and Contents of This Book |
|
|
8 | (11) |
|
1.4.1 Underactuated Robotic Systems |
|
|
8 | (1) |
|
1.4.2 Contents and Features |
|
|
9 | (10) |
2 Fundamental Background |
|
19 | (28) |
|
2.1 Lyapunov Stability Theory |
|
|
19 | (9) |
|
|
19 | (1) |
|
2.1.2 Direct Method of Lyapunov |
|
|
20 | (2) |
|
2.1.3 LaSalle's Invariance Principle |
|
|
22 | (1) |
|
2.1.4 Indirect Method of Lyapunov |
|
|
23 | (3) |
|
2.1.5 Theorems for Manifolds and Homoclinic Orbits |
|
|
26 | (2) |
|
|
28 | (7) |
|
|
28 | (5) |
|
2.2.2 Properties of Robot |
|
|
33 | (2) |
|
2.3 Three 2-Link Planar Robots |
|
|
35 | (6) |
|
|
35 | (3) |
|
2.3.2 Equilibrium Configurations |
|
|
38 | (1) |
|
2.3.3 Linearization and Linear Controllability |
|
|
39 | (2) |
|
2.4 Control for Underactuated Robotic Systems |
|
|
41 | (3) |
|
2.4.1 Partial Feedback Linearization |
|
|
41 | (1) |
|
2.4.2 Energy-Based Control Approach |
|
|
42 | (2) |
|
|
44 | (3) |
3 Directly Driven Acrobot |
|
47 | (24) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
48 | (3) |
|
3.4 Global Motion Analysis |
|
|
51 | (13) |
|
3.4.1 Convergence of Energy |
|
|
52 | (4) |
|
3.4.2 Closed-Loop Equilibrium Points |
|
|
56 | (8) |
|
|
64 | (1) |
|
3.6 Locally Stabilizing Control |
|
|
65 | (1) |
|
|
66 | (3) |
|
|
69 | (2) |
4 Remotely Driven Acrobot |
|
71 | (24) |
|
|
71 | (1) |
|
|
72 | (2) |
|
4.3 Global Motion Analysis |
|
|
74 | (5) |
|
|
79 | (2) |
|
4.5 Simulation and Experimental Results |
|
|
81 | (11) |
|
|
92 | (3) |
5 Pendubot |
|
95 | (14) |
|
|
95 | (1) |
|
|
96 | (3) |
|
5.3 Global Motion Analysis |
|
|
99 | (5) |
|
|
104 | (3) |
|
|
107 | (2) |
6 Rotational Pendulum |
|
109 | (18) |
|
|
109 | (1) |
|
6.2 Preliminary Knowledge |
|
|
110 | (1) |
|
|
111 | (3) |
|
6.4 Global Motion Analysis |
|
|
114 | (3) |
|
6.5 Simulation Results for Rotational Pendulum 1 |
|
|
117 | (1) |
|
6.6 Experimental Verification for Rotational Pendulum 2 |
|
|
118 | (7) |
|
|
120 | (1) |
|
6.6.2 Swing-up and Stabilizing Control |
|
|
121 | (4) |
|
|
125 | (2) |
7 Counter-Weighted Acrobot |
|
127 | (12) |
|
|
127 | (1) |
|
7.2 Preliminary Knowledge and Problem Formulation |
|
|
128 | (1) |
|
|
128 | (1) |
|
7.2.2 Problem Formulation |
|
|
129 | (1) |
|
7.3 Linear Controllability |
|
|
129 | (1) |
|
7.4 Energy-Based Controller |
|
|
130 | (1) |
|
|
131 | (2) |
|
|
133 | (3) |
|
|
136 | (3) |
8 Variable Length Pendulum |
|
139 | (16) |
|
|
139 | (1) |
|
8.2 Preliminary Knowledge and Problem Formulation |
|
|
140 | (1) |
|
|
140 | (1) |
|
8.2.2 Problem Formulation |
|
|
141 | (1) |
|
|
141 | (3) |
|
8.3.1 Using Total Mechanical Energy Shaping |
|
|
142 | (1) |
|
8.3.2 Using Partial Energy Shaping |
|
|
143 | (1) |
|
|
144 | (5) |
|
8.4.1 Convergence of Energy |
|
|
144 | (2) |
|
8.4.2 Closed-Loop Equilibrium Points |
|
|
146 | (3) |
|
|
149 | (2) |
|
|
151 | (4) |
9 2-Link Underactuated Robot with Flexible Elbow Joint |
|
155 | (20) |
|
|
155 | (1) |
|
9.2 Preliminary Knowledge |
|
|
156 | (1) |
|
9.3 Properties of Robot Under Gravity |
|
|
157 | (4) |
|
9.3.1 Linear Controllability |
|
|
158 | (1) |
|
9.3.2 Active Link Under Constant Torque |
|
|
159 | (2) |
|
9.4 PD Control for Robot with Big Spring Constant |
|
|
161 | (3) |
|
9.5 Swing-up Controller for Robot with Small Spring Constant |
|
|
164 | (6) |
|
|
165 | (2) |
|
|
167 | (3) |
|
|
170 | (4) |
|
9.6.1 Case of Big Spring Constant |
|
|
171 | (1) |
|
9.6.2 Case of Small Spring Constant |
|
|
172 | (2) |
|
|
174 | (1) |
10 3-Link Planar Robot with Passive First Joint |
|
175 | (20) |
|
|
175 | (1) |
|
10.2 Preliminary Knowledge and Problem Formulation |
|
|
176 | (3) |
|
|
176 | (2) |
|
10.2.2 Problem Formulation |
|
|
178 | (1) |
|
10.3 Virtual Composite Link and Coordinate Transformation |
|
|
179 | (1) |
|
10.4 Swing-up Controller Using Virtual Composite Link |
|
|
180 | (3) |
|
10.5 Global Motion Analysis |
|
|
183 | (7) |
|
10.5.1 Convergence of Energy |
|
|
183 | (3) |
|
10.5.2 Closed-Loop Equilibrium Points |
|
|
186 | (4) |
|
|
190 | (1) |
|
|
191 | (2) |
|
|
193 | (2) |
11 n-Link Planar Robot with Passive First Joint |
|
195 | (24) |
|
|
195 | (1) |
|
|
196 | (1) |
|
11.3 Virtual Composite Links and Coordinate Transformation |
|
|
197 | (5) |
|
11.3.1 Virtual Composite Links |
|
|
197 | (1) |
|
11.3.2 Coordinate Transformation on Angles of Active Joints . |
|
|
198 | (4) |
|
11.4 Swing-up Controller Using Virtual Composite Links |
|
|
202 | (3) |
|
11.5 Global Motion Analysis |
|
|
205 | (5) |
|
11.5.1 Convergence of Energy |
|
|
205 | (1) |
|
11.5.2 Closed-Loop Equilibrium Points |
|
|
206 | (4) |
|
|
210 | (3) |
|
|
213 | (3) |
|
11.7.1 Model of 4-Link Planar Robot |
|
|
213 | (2) |
|
11.7.2 Time Responses of 4-Link Planar Robot |
|
|
215 | (1) |
|
|
216 | (3) |
12 n-Link Planar Robot with Single Passive Joint |
|
219 | (24) |
|
|
219 | (1) |
|
|
220 | (2) |
|
12.3 Series of Virtual Composite Links and Coordinate Transformation |
|
|
222 | (3) |
|
12.4 Swing-up Controller Using Virtual Composite Links |
|
|
225 | (2) |
|
12.5 Global Motion Analysis |
|
|
227 | (7) |
|
12.5.1 Convergence of Energy |
|
|
227 | (2) |
|
12.5.2 Closed-Loop Equilibrium Points |
|
|
229 | (5) |
|
|
234 | (1) |
|
12.7 Simulation Results for 4-Link Planar Robots |
|
|
235 | (4) |
|
12.7.1 Robot with First Passive Joint |
|
|
236 | (1) |
|
12.7.2 Robot with Second Passive Joint |
|
|
237 | (1) |
|
12.7.3 Robot with Last Passive Joint |
|
|
238 | (1) |
|
|
239 | (4) |
13 Two Parallel Pendulums on Cart |
|
243 | (14) |
|
|
243 | (1) |
|
13.2 Preliminary Knowledge |
|
|
244 | (2) |
|
|
244 | (1) |
|
13.2.2 Swing-up Controller |
|
|
245 | (1) |
|
13.3 Convergence of Energy of Each Pendulum |
|
|
246 | (4) |
|
13.4 Stability Analysis of Invariant Sets |
|
|
250 | (5) |
|
|
255 | (1) |
|
|
255 | (2) |
14 Double Pendulum on Cart |
|
257 | (20) |
|
|
257 | (1) |
|
14.2 Preliminary Knowledge and Problem Formulation |
|
|
258 | (2) |
|
|
258 | (1) |
|
14.2.2 Problem Formulation |
|
|
259 | (1) |
|
14.3 Energy-Based Controller |
|
|
260 | (2) |
|
14.4 Global Motion Analysis |
|
|
262 | (10) |
|
14.4.1 Convergence of Energy |
|
|
262 | (7) |
|
14.4.2 Closed-Loop Equilibrium Points |
|
|
269 | (3) |
|
|
272 | (4) |
|
|
276 | (1) |
15 3-Link Planar Robot with Passive Joints |
|
277 | (18) |
|
|
277 | (1) |
|
15.2 Preliminary Knowledge and Problem Formulation |
|
|
278 | (3) |
|
15.2.1 Preliminary Knowledge |
|
|
278 | (2) |
|
15.2.2 Problem Formulation |
|
|
280 | (1) |
|
15.3 Energy-Based Conroller |
|
|
281 | (1) |
|
15.4 Global Motion Analysis |
|
|
282 | (10) |
|
15.4.1 Property of Active Link Under Constant Torque |
|
|
283 | (4) |
|
15.4.2 Convergence of Energy and Stability of Equilibrium Points |
|
|
287 | (5) |
|
|
292 | (1) |
|
|
293 | (2) |
16 2-Link Flying Robot |
|
295 | (16) |
|
|
295 | (1) |
|
16.2 Models of Flying Robot |
|
|
296 | (3) |
|
|
299 | (1) |
|
16.4 Global Asymptotic Stabilization |
|
|
300 | (1) |
|
16.5 Control Designs via Backstepping Approach |
|
|
301 | (6) |
|
16.5.1 Virtual Control Input |
|
|
302 | (2) |
|
16.5.2 Velocity- and Acceleration-Based Controllers |
|
|
304 | (3) |
|
|
307 | (1) |
|
|
308 | (1) |
|
|
308 | (3) |
References |
|
311 | (6) |
Index |
|
317 | |