Muutke küpsiste eelistusi

Control of Ground and Aerial Robots 2023 ed. [Kõva köide]

  • Formaat: Hardback, 146 pages, kõrgus x laius: 235x155 mm, kaal: 442 g, 84 Illustrations, color; 11 Illustrations, black and white; XIV, 146 p. 95 illus., 84 illus. in color., 1 Hardback
  • Sari: Intelligent Systems, Control and Automation: Science and Engineering 103
  • Ilmumisaeg: 20-Jan-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031230876
  • ISBN-13: 9783031230875
  • Kõva köide
  • Hind: 122,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 144,49 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 146 pages, kõrgus x laius: 235x155 mm, kaal: 442 g, 84 Illustrations, color; 11 Illustrations, black and white; XIV, 146 p. 95 illus., 84 illus. in color., 1 Hardback
  • Sari: Intelligent Systems, Control and Automation: Science and Engineering 103
  • Ilmumisaeg: 20-Jan-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031230876
  • ISBN-13: 9783031230875
The focus of this book is kinematic and dynamic control of a single mobile robot or a group of them. New simple and integrated solutions are presented for tasks of positioning, trajectory tracking and path following. Control of Ground and Aerial Robots synthesizes new results on control of mobile robots developed by M.Sc. and Ph.D. students supervised by the authors.





The robots considered are wheeled mobile platforms, with emphasis on differential drive vehicles, and the multirotor aerial robots. Integrated control solutions based on the technique of feedback linearization are proposed to guide either a single robot or a homogeneous/heterogeneous group of mobile robots. Examples on the use of the proposed controllers are also provided.





Finally, Control of Ground and Aerial Robots is intended to help graduate and advanced undergraduate students in engineering, as well as researchers in the area of robot control, to design controllers to autonomously guide the more common mobile platforms.
1 Introduction
1(4)
References
4(1)
2 Kinematic Models
5(1)
2.1 Wheeled Robots
5(1)
2.1.1 Omnidirectional Robots
6(2)
2.1.2 Unicycle (Differential Drive) Robots
8(2)
2.1.3 Car-like Robots
10(2)
2.1.4 Extended Kinematics for Nonholonomic Robots
12(4)
2.2 Aerial Multirotor Robots
16(4)
2.3 Concluding Remarks
20(3)
References
21(2)
3 Dynamic Models
23(18)
3.1 Modeling a Unicycle Robot with Velocity Inputs
23(6)
3.1.1 Model Properties
25(3)
3.1.2 Model Parameterization and Identification
28(1)
3.2 Dynamic Model for the Car-Like Robot
29(3)
3.3 The Dynamic Model of a Quadrotor
32(6)
3.4 Concluding Remarks
38(3)
References
38(3)
4 Motion Control
41(58)
4.1 Introduction
41(1)
4.2 Basic Control Objectives
42(1)
4.3 Inner-Outer Controllers
43(1)
4.4 Inverse Kinematics Technique
44(3)
4.5 Trajectory-Tracking Control
47(12)
4.6 Positioning Control
59(4)
4.7 Path-Following Control
63(9)
4.8 Kinematic Sliding Compensation of Non-holonomic Robots
72(3)
4.9 Dynamic Control
75(5)
4.10 Feedback Linearization
80(1)
4.11 Cascade Dynamic Compensation
81(3)
4.12 Adaptive Control
84(10)
4.13 Concluding Remarks
94(5)
References
96(3)
5 Control of Multi-robot Systems
99(46)
5.1 Introduction
99(1)
5.2 Characterization of a Robot Formation
100(2)
5.3 Leader-Follower Paradigm
102(7)
5.4 Virtual Structure Paradigm
109(3)
5.4.1 Cluster Space Versus Robots Space
109(1)
5.4.2 Transformations
110(1)
5.4.3 Movement Jacobian
111(1)
5.5 Control in the Cluster Space
112(2)
5.6 Control and Dynamic Compensation in the Robots Space
114(8)
5.7 Scalability
122(3)
5.8 Multiple Objectives
125(16)
5.9 Concluding Remarks
141(4)
References
142(3)
Index 145