|
|
1 | (6) |
|
1.1 Rehabilitation Technologies |
|
|
1 | (2) |
|
1.2 Role of Control Systems |
|
|
3 | (1) |
|
|
4 | (3) |
|
|
5 | (2) |
|
2 Modeling and Identification |
|
|
7 | (14) |
|
2.1 Modeling of the Mechanically Supported Human Arm |
|
|
7 | (5) |
|
|
8 | (1) |
|
2.1.2 Muscle Selection and Modeling |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (2) |
|
|
12 | (7) |
|
2.2.1 Muscle Axis Identification |
|
|
12 | (1) |
|
2.2.2 Passive Parameter Identification |
|
|
13 | (1) |
|
2.2.3 Muscle Identification |
|
|
14 | (1) |
|
2.2.4 Multiplicative Muscle Function Identification |
|
|
15 | (1) |
|
2.2.5 Case Study: Triceps and Anterior Deltoid with ArmeoSpring |
|
|
16 | (3) |
|
|
19 | (2) |
|
|
19 | (2) |
|
3 Feedback Control Design |
|
|
21 | (24) |
|
3.1 General Feedback Control Framework |
|
|
22 | (5) |
|
3.1.1 Stability of Unactuated Joints |
|
|
23 | (4) |
|
3.2 Case Study: Input-Output Linearizing Controller |
|
|
27 | (4) |
|
3.2.1 Optimal Tracking Controller |
|
|
30 | (1) |
|
|
31 | (9) |
|
3.4 Case Study: Proportional-Integral-Derivative Controller |
|
|
40 | (1) |
|
|
41 | (4) |
|
|
42 | (3) |
|
4 Iterative Learning Control Design |
|
|
45 | (30) |
|
4.1 General ILC Framework |
|
|
46 | (7) |
|
4.2 Case Study: ILC Applied to Input-Output Linearized System |
|
|
53 | (3) |
|
|
54 | (1) |
|
4.2.2 Experimental Results |
|
|
55 | (1) |
|
4.3 Case Study: ILC Applied to Non-linearized System |
|
|
56 | (3) |
|
4.3.1 Experimental Results |
|
|
57 | (2) |
|
|
59 | (13) |
|
|
72 | (3) |
|
|
72 | (3) |
|
5 Clinical Application: Multiple Sclerosis |
|
|
75 | (10) |
|
5.1 System Description and Set-Up |
|
|
75 | (3) |
|
|
77 | (1) |
|
|
78 | (3) |
|
5.2.1 Assisted Tracking Performance |
|
|
78 | (2) |
|
5.2.2 Unassisted Tracking Performance |
|
|
80 | (1) |
|
5.2.3 Clinical Outcome Measures |
|
|
81 | (1) |
|
|
81 | (2) |
|
|
83 | (2) |
|
|
83 | (2) |
|
6 Constrained ILC for Human Motor Control |
|
|
85 | (26) |
|
6.1 Extended Task Representation |
|
|
85 | (2) |
|
6.2 Reduced Stimulation and Joint Subspaces |
|
|
87 | (1) |
|
6.3 Extended ILC Framework |
|
|
88 | (7) |
|
|
95 | (3) |
|
|
98 | (3) |
|
6.5.1 Computational Models of Upper Limb Motion |
|
|
98 | (1) |
|
6.5.2 Unimpaired Motion Data Collection |
|
|
98 | (2) |
|
|
100 | (1) |
|
6.6 Computational Model Development |
|
|
101 | (1) |
|
|
102 | (5) |
|
|
107 | (4) |
|
|
108 | (3) |
|
7 Clinical Application: Goal-Orientated Stroke Rehabilitation |
|
|
111 | (10) |
|
7.1 System Description and Set-Up |
|
|
111 | (4) |
|
|
114 | (1) |
|
|
115 | (3) |
|
7.2.1 Assisted Tracking Performance |
|
|
115 | (1) |
|
7.2.2 Unassisted Tracking Performance |
|
|
116 | (1) |
|
7.2.3 Clinical Outcome Measures |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
118 | (3) |
|
|
119 | (2) |
|
8 Electrode Array Control Design |
|
|
121 | (20) |
|
8.1 Modeling of a Single Array |
|
|
121 | (1) |
|
8.2 General Array Control Framework |
|
|
122 | (4) |
|
8.3 Subspace Identification |
|
|
126 | (8) |
|
8.3.1 Selection Using Experimental Data |
|
|
126 | (4) |
|
8.3.2 Selection Using Structural Knowledge |
|
|
130 | (2) |
|
8.3.3 General Stimulation Subspace Identification Procedure |
|
|
132 | (2) |
|
|
134 | (1) |
|
8.5 Case Study: Functional Hand and Wrist Motion |
|
|
135 | (5) |
|
8.5.1 Unrestricted Stimulation Space |
|
|
136 | (3) |
|
8.5.2 Stimulation Subspace |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
140 | (1) |
|
9 Clinical Application: Fully Functional Stroke Rehabilitation |
|
|
141 | (22) |
|
9.1 General Integrated Control Framework |
|
|
142 | (8) |
|
9.2 System Description and Set-Up |
|
|
150 | (6) |
|
|
151 | (1) |
|
|
151 | (2) |
|
|
153 | (1) |
|
9.2.4 Stimulation Hardware |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
156 | (5) |
|
9.3.1 Unimpaired Participants |
|
|
157 | (2) |
|
9.3.2 Stroke Participants |
|
|
159 | (2) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
162 | (1) |
|
10 Conclusions and Future Research Directions |
|
|
163 | (12) |
|
10.1 Elimination of Identification and Manual Controller Tuning |
|
|
164 | (8) |
|
10.2 Wearable ES Technology |
|
|
172 | (2) |
|
10.3 Wider Application Domains and Greater Scope |
|
|
174 | (1) |
References |
|
175 | |