Muutke küpsiste eelistusi

Core Model Iterability Problem [Pehme köide]

  • Formaat: Paperback / softback, 115 pages, kõrgus x laius: 235x155 mm, kaal: 201 g, V, 115 p., 1 Paperback / softback
  • Sari: Lecture Notes in Logic 8
  • Ilmumisaeg: 16-Dec-1996
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540619380
  • ISBN-13: 9783540619383
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 115 pages, kõrgus x laius: 235x155 mm, kaal: 201 g, V, 115 p., 1 Paperback / softback
  • Sari: Lecture Notes in Logic 8
  • Ilmumisaeg: 16-Dec-1996
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540619380
  • ISBN-13: 9783540619383
Large cardinal hypotheses play a central role in modern set theory. One important way to understand such hypotheses is to construct concrete, minimal universes, or "core models", satisfying them. Since Gödel's pioneering work on the universe of constructible sets, several larger core models satisfying stronger hypotheses have been constructed, and these have proved quite useful. Here the author extends this theory so that it can produce core models satisfying "There is a Woodin cardinal", a large cardinal hypothesis which is the focus of much current research. The book is intended for advanced graduate students and reseachers in set theory.

Muu info

Springer Book Archives
0. Introduction 1(4)
1. The construction of K(c)
5(5)
2. Iterability
10(15)
3. Thick classes and universal weasels
25(4)
4. The hull and definability properties
29(6)
5. The construction of true K
35(8)
6. An inductive definition of K
43(10)
7. Some applications
53(20)
A. Saturated ideals
53(3)
B. Generic absoluteness
56(3)
C. Unique branches
59(4)
D. XXX correctness and the size of u(2)
63(10)
8. Embeddings of K
73(16)
9. A general iterability theorem
89(20)
References 109(2)
Index of definitions 111