Muutke küpsiste eelistusi

Counting Surfaces: CRM Aisenstadt Chair lectures 1st ed. 2016 [Kõva köide]

  • Formaat: Hardback, 414 pages, kõrgus x laius: 235x155 mm, kaal: 7686 g, 47 Illustrations, color; 62 Illustrations, black and white; XVII, 414 p. 109 illus., 47 illus. in color., 1 Hardback
  • Sari: Progress in Mathematical Physics 70
  • Ilmumisaeg: 31-Mar-2016
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3764387963
  • ISBN-13: 9783764387969
Teised raamatud teemal:
  • Kõva köide
  • Hind: 132,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 155,39 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 414 pages, kõrgus x laius: 235x155 mm, kaal: 7686 g, 47 Illustrations, color; 62 Illustrations, black and white; XVII, 414 p. 109 illus., 47 illus. in color., 1 Hardback
  • Sari: Progress in Mathematical Physics 70
  • Ilmumisaeg: 31-Mar-2016
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3764387963
  • ISBN-13: 9783764387969
Teised raamatud teemal:
The problem of enumerating maps (a map is a set of polygonal "countries" on a world of a certain topology, not necessarily the plane or the sphere) is an important problem in mathematics and physics, and it has many applications ranging from statistical physics, geometry, particle physics, informatics, biology, ... etc. This problem has been studied by many communities of researchers, mostly combinatorists, probabilists, and physicists. In 1978+, physicists have invented a method called "matrix models" to address that problem, and many results have been obtained.Besides, another important problem in mathematics and physics (in particular string theory), is to count Riemann surfaces. Riemann surfaces of a given topology are parametrized by a finite number of real parameters (called moduli), and the moduli space is a finite dimensional compact manifold of complicated topology. The number of Riemann surfaces is the volume of that moduli space. More generally, an important problem in algebraic geometry is to characterize the moduli spaces, by computing not only their volumes, but also their intersection numbers.The so called Witten's conjecture (which was first proved by Kontsevich), was the assertion that Riemann surfaces can be obtained as limits of polygonal surfaces (maps), made of a very large number of very small polygons. In other words, the number of maps in a certain limit, should give the intersection numbers of moduli spaces.In this book, we show how that limit takes place. The goal of this book is to explain the "matrix model" method, to show the main results obtained with it, and to compare it with methods used in combinatorics (bijective proofs, Tutte's equations), or algebraic geometry (Mirzakhani's recursions).The book intends to be self-contained and pedagogical, and will provide comprehensive proofs, several examples, and will give the general formula for the enumeration of maps on surfaces of any topology. In the end, the link with more general topics such as algebraic geometry, string theory, will be discussed, and in particular we give a proof of the Witten-Kontsevich conjecture.

This book explains the "matrix model" method developed by physicists to address the problem of enumerating maps and compares it with other methods. It includes proofs, examples and a general formula for the enumeration of maps on surfaces of any topology.

Arvustused

This book brings together details of topological recursion from many different papers and organizes them in an accessible way. this book will be an invaluable resource for mathematicians learning about topological recursion. (Daniel D. Moskovich, Mathematical Reviews, February, 2017) 

The author explains how matrix models and counting surfaces are related and aims at presenting to mathematicians and physicists the random matrix approach to quantum gravity. The book is an outstanding monograph of a recent research trend in surface theory. (Gert Roepstorff, zbMATH 1338.81005, 2016)

1 Maps and Discrete Surfaces
1(24)
1.1 Gluing Polygons
2(10)
1.1.1 Intuitive Definition
2(4)
1.1.2 Formal Definition
6(3)
1.1.3 Topology
9(1)
1.1.4 Symmetry Factor
10(2)
1.2 Generating Functions for Counting Maps
12(9)
1.2.1 Maps with Fixed Number of Vertices
13(2)
1.2.2 Fixed Boundary Lengths
15(3)
1.2.3 Redundancy of the Parameters
18(1)
1.2.4 All Genus
19(1)
1.2.5 Non Connected Maps
20(1)
1.2.6 Rooted Maps: One Boundary
21(1)
1.3 Tutte's Equations
21(3)
1.3.1 Planar Case: The Disk
21(1)
1.3.2 Higher Genus Tutte Equations
22(2)
1.4 Exercises
24(1)
2 Formal Matrix Integrals
25(28)
2.1 Definition of a Formal Matrix Integral
25(5)
2.1.1 Introductory Example: 1-Matrix Model and Quartic Potential
25(2)
2.1.2 Comparison with Convergent Integrals
27(1)
2.1.3 Formal Integrals, General Case
27(3)
2.2 Wick's Theorem and Combinatorics
30(7)
2.2.1 Generalities About Wick's Theorem
30(2)
2.2.2 Matrix Gaussian Integrals
32(5)
2.3 Generating Functions of Maps and Matrix Integrals
37(1)
2.3.1 Generating Functions for Closed Maps
37(1)
2.4 Maps with Boundaries or Marked Faces
38(3)
2.4.1 One Boundary
38(1)
2.4.2 Several Boundaries
39(1)
2.4.3 Topological Expansion for Bounded Maps of Given Genus
40(1)
2.4.4 Resolvents
41(1)
2.5 Loop Equations = Tutte Equations
41(3)
2.6 Loop Equations and "Virasoro Constraints"
44(4)
2.6.1 Virasoro-Witt Generators
46(1)
2.6.2 Generating Series of Virasoro-Witt Generators
46(1)
2.6.3 Maps and Virasoro Constraints
47(1)
2.7 Summary Maps and Matrix Integrals
48(2)
2.8 Exercises
50(3)
3 Solution of Tutte-Loop Equations
53(92)
3.1 Disk Amplitude
54(27)
3.1.1 Solving Tutte's Equation
54(1)
3.1.2 A Useful Lemma
55(3)
3.1.3 1-Cut Solution, Zhukovsky's Variable
58(7)
3.1.4 Even-Bipartite Maps
65(3)
3.1.5 Generating Functions of Disks of Fixed Perimeter
68(1)
3.1.6 Derivatives of the Disk Amplitude
69(3)
3.1.7 Example: Planar Rooted Quadrangulations
72(3)
3.1.8 Example: Planar Rooted Triangulations
75(4)
3.1.9 Example: Gaussian Matrix Integral, Catalan Numbers
79(2)
3.2 Cylinders/Annulus Amplitude
81(5)
3.2.1 Universality and Fundamental Second Kind Kernel
83(1)
3.2.2 Cylinders of Fixed Perimeter Lengths
84(2)
3.3 Higher Topology and Topological Recursion
86(17)
3.3.1 Preliminary Results: Analytical Properties
86(5)
3.3.2 The Topological Recursion
91(2)
3.3.3 Topological Recursion for Wk(g),s, and the Method of Moments
93(3)
3.3.4 Examples of Maps of Higher Topology
96(7)
3.4 Closed Surfaces
103(17)
3.4.1 General Considerations
103(4)
3.4.2 The Generating Function of Stable Maps of Genus ≥ 2
107(3)
3.4.3 Planar Maps
110(4)
3.4.4 Genus 1 Maps
114(4)
3.4.5 Derivatives of Fg's
118(1)
3.4.6 Summary Closed Maps
119(1)
3.5 Structure Properties
120(9)
3.5.1 Singularities
126(1)
3.5.2 Examples
126(3)
3.6 Examples of Higher Topologies Computations
129(6)
3.6.1 Quadrangulations
129(6)
3.7 Summary, Generating Functions of Maps
135(7)
3.8 Exercises
142(3)
4 Multicut Case
145(24)
4.1 Formal Integrals and Extrema of V
146(6)
4.1.1 A Digression on Convergent Normal Matrix Integrals
147(2)
4.1.2 Definition of Formal Cubic Integrals
149(1)
4.1.3 General Definition of Formal Multicut Integrals
150(2)
4.2 What Are Multicut Formal Integrals Counting?
152(3)
4.2.1 Discrete Surfaces Made of Di-polygons
153(2)
4.2.2 Formal Multicut Matrix Integrals and Nodal Surfaces
155(1)
4.3 Solution of Loop Equations
155(11)
4.3.1 Multicut Lemma and Cycle Integrals
155(4)
4.3.2 Disc Generating Function
159(1)
4.3.3 Higher Genus Algebraic Equations
160(1)
4.3.4 Geometry of the Spectral Curve
161(3)
4.3.5 Cylinder Generating Function
164(1)
4.3.6 Higher Topologies
164(2)
4.4 Maps Without Boundaries
166(1)
4.5 Exercises
167(2)
5 Counting Large Maps
169(68)
5.1 Introduction to Large Maps and Double Scaling Limit
170(5)
5.1.1 Large Size Asymptotics and Singularities
170(1)
5.1.2 Example: Quadrangulations
171(2)
5.1.3 About Double Scaling Limits and Liouville Quantum Gravity
173(2)
5.2 Critical Spectral Curve
175(7)
5.2.1 Spectral Curves with Cusps
175(3)
5.2.2 Multicritical Points
178(4)
5.3 Computation of the Asymptotic Wn(g)'s
182(13)
5.3.1 Double Scaling Limit of Fg
185(2)
5.3.2 Critical Exponents and KPZ
187(4)
5.3.3 Example: Triangulations and Pure Gravity
191(4)
5.4 Minimal Models
195(39)
5.4.1 Introduction to Minimal Models
195(1)
5.4.2 String Equation
196(2)
5.4.3 Lax Pair
198(1)
5.4.4 Lax Equation
199(1)
5.4.5 The Linear ψ System
200(1)
5.4.6 Kernel and Correlators
201(10)
5.4.7 Example: (1,2) Minimal Model, the Airy Kernel
211(3)
5.4.8 Tau Function
214(3)
5.4.9 Large N Limit
217(1)
5.4.10 Topological Expansion
218(4)
5.4.11 WKB Expansion
222(5)
5.4.12 Link with Symplectic Invariants
227(2)
5.4.13 Tau Function
229(1)
5.4.14 Large N and Large s
230(3)
5.4.15 Example: Pure Gravity Case
233(1)
5.5 Summary: Large Maps and Liouville Gravity
234(1)
5.6 Exercises
235(2)
6 Counting Riemann Surfaces
237(98)
6.1 Moduli Spaces of Riemann Surfaces
237(12)
6.1.1 Examples of Moduli Spaces
238(4)
6.1.2 Stability and Unstability
242(2)
6.1.3 Compactification
244(5)
6.2 Informal Introduction to Intersection Numbers
249(5)
6.2.1 Informal Introduction to Chern Classes
250(2)
6.2.2 Intersection Numbers of Cotangent Bundles
252(2)
6.3 Parametrizing Surfaces
254(35)
6.3.1 Teichmuller Hyperbolic Foliation
254(4)
6.3.2 Strebel Foliation
258(4)
6.3.3 Chern Classes
262(3)
6.3.4 Computing Intersection Numbers
265(2)
6.3.5 Generating Function for Intersection Numbers
267(3)
6.3.6 Generating Function and Kontsevich Integral
270(6)
6.3.7 Generating Functions with Marked Points
276(13)
6.4 Combinatorics of Graphs and Recursions
289(33)
6.4.1 Edge Removal and Tutte's Equations
292(3)
6.4.2 Disc Amplitude (Rooted Planar Strebel Graphs)
295(2)
6.4.3 Cylinder Amplitude
297(2)
6.4.4 The Pair of Pants (0,3)
299(1)
6.4.5 The Lid (1,1)
300(2)
6.4.6 Stable Topologies
302(7)
6.4.7 Topological Recursion for Intersection Numbers
309(1)
6.4.8 Examples
310(2)
6.4.9 Computation of Fg = ωg.0
312(10)
6.5 Large Maps, Liouville Gravity and Topological Gravity
322(1)
6.6 Weil-Petersson Volumes
323(3)
6.7 Summary: Riemann Surfaces and Topological Gravity
326(5)
6.8 Exercises
331(4)
7 Topological Recursion and Symplectic Invariants
335(30)
7.1 Symplectic Invariants of Spectral Curves
335(10)
7.1.1 Spectral Curves
335(3)
7.1.2 Geometry of the Spectral Curve
338(7)
7.2 Main Properties
345(2)
7.3 Deformations of Symplectic Invariants
347(9)
7.3.1 Spectral Curve Deformation
347(2)
7.3.2 Form-Cycle Duality
349(4)
7.3.3 Variation of ωn(g)
353(3)
7.4 Diagrammatic Representation
356(7)
7.4.1 Graphs
356(1)
7.4.2 Example of g1(2)(p)
357(1)
7.4.3 Weight of a Graph
358(2)
7.4.4 Examples
360(3)
7.4.5 Remark: Pants Gluings
363(1)
7.5 Exercises
363(2)
8 Ising Model
365(44)
8.1 Bicolored Maps
366(5)
8.1.1 Reformulation
368(3)
8.2 Tutte-Like Equations
371(5)
8.2.1 Equation for Generating Functions
375(1)
8.3 Solution of Loop Equations
376(5)
8.3.1 The Disc: Spectral Curve
376(4)
8.3.2 Example: Ising Model on Quadrangulations
380(1)
8.3.3 All Topologies Generating Functions
381(1)
8.4 Mixed Boundary Conditions
381(23)
8.4.1 Maps with Mixed Boundaries
382(15)
8.4.2 Planar Discs
397(7)
8.5 Summary: Ising Model
404(2)
8.6 Exercises
406(3)
Bibliography 409(4)
Index 413