|
1 Maps and Discrete Surfaces |
|
|
1 | (24) |
|
|
2 | (10) |
|
1.1.1 Intuitive Definition |
|
|
2 | (4) |
|
|
6 | (3) |
|
|
9 | (1) |
|
|
10 | (2) |
|
1.2 Generating Functions for Counting Maps |
|
|
12 | (9) |
|
1.2.1 Maps with Fixed Number of Vertices |
|
|
13 | (2) |
|
1.2.2 Fixed Boundary Lengths |
|
|
15 | (3) |
|
1.2.3 Redundancy of the Parameters |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
1.2.6 Rooted Maps: One Boundary |
|
|
21 | (1) |
|
|
21 | (3) |
|
1.3.1 Planar Case: The Disk |
|
|
21 | (1) |
|
1.3.2 Higher Genus Tutte Equations |
|
|
22 | (2) |
|
|
24 | (1) |
|
2 Formal Matrix Integrals |
|
|
25 | (28) |
|
2.1 Definition of a Formal Matrix Integral |
|
|
25 | (5) |
|
2.1.1 Introductory Example: 1-Matrix Model and Quartic Potential |
|
|
25 | (2) |
|
2.1.2 Comparison with Convergent Integrals |
|
|
27 | (1) |
|
2.1.3 Formal Integrals, General Case |
|
|
27 | (3) |
|
2.2 Wick's Theorem and Combinatorics |
|
|
30 | (7) |
|
2.2.1 Generalities About Wick's Theorem |
|
|
30 | (2) |
|
2.2.2 Matrix Gaussian Integrals |
|
|
32 | (5) |
|
2.3 Generating Functions of Maps and Matrix Integrals |
|
|
37 | (1) |
|
2.3.1 Generating Functions for Closed Maps |
|
|
37 | (1) |
|
2.4 Maps with Boundaries or Marked Faces |
|
|
38 | (3) |
|
|
38 | (1) |
|
|
39 | (1) |
|
2.4.3 Topological Expansion for Bounded Maps of Given Genus |
|
|
40 | (1) |
|
|
41 | (1) |
|
2.5 Loop Equations = Tutte Equations |
|
|
41 | (3) |
|
2.6 Loop Equations and "Virasoro Constraints" |
|
|
44 | (4) |
|
2.6.1 Virasoro-Witt Generators |
|
|
46 | (1) |
|
2.6.2 Generating Series of Virasoro-Witt Generators |
|
|
46 | (1) |
|
2.6.3 Maps and Virasoro Constraints |
|
|
47 | (1) |
|
2.7 Summary Maps and Matrix Integrals |
|
|
48 | (2) |
|
|
50 | (3) |
|
3 Solution of Tutte-Loop Equations |
|
|
53 | (92) |
|
|
54 | (27) |
|
3.1.1 Solving Tutte's Equation |
|
|
54 | (1) |
|
|
55 | (3) |
|
3.1.3 1-Cut Solution, Zhukovsky's Variable |
|
|
58 | (7) |
|
3.1.4 Even-Bipartite Maps |
|
|
65 | (3) |
|
3.1.5 Generating Functions of Disks of Fixed Perimeter |
|
|
68 | (1) |
|
3.1.6 Derivatives of the Disk Amplitude |
|
|
69 | (3) |
|
3.1.7 Example: Planar Rooted Quadrangulations |
|
|
72 | (3) |
|
3.1.8 Example: Planar Rooted Triangulations |
|
|
75 | (4) |
|
3.1.9 Example: Gaussian Matrix Integral, Catalan Numbers |
|
|
79 | (2) |
|
3.2 Cylinders/Annulus Amplitude |
|
|
81 | (5) |
|
3.2.1 Universality and Fundamental Second Kind Kernel |
|
|
83 | (1) |
|
3.2.2 Cylinders of Fixed Perimeter Lengths |
|
|
84 | (2) |
|
3.3 Higher Topology and Topological Recursion |
|
|
86 | (17) |
|
3.3.1 Preliminary Results: Analytical Properties |
|
|
86 | (5) |
|
3.3.2 The Topological Recursion |
|
|
91 | (2) |
|
3.3.3 Topological Recursion for Wk(g),s, and the Method of Moments |
|
|
93 | (3) |
|
3.3.4 Examples of Maps of Higher Topology |
|
|
96 | (7) |
|
|
103 | (17) |
|
3.4.1 General Considerations |
|
|
103 | (4) |
|
3.4.2 The Generating Function of Stable Maps of Genus ≥ 2 |
|
|
107 | (3) |
|
|
110 | (4) |
|
|
114 | (4) |
|
3.4.5 Derivatives of Fg's |
|
|
118 | (1) |
|
3.4.6 Summary Closed Maps |
|
|
119 | (1) |
|
|
120 | (9) |
|
|
126 | (1) |
|
|
126 | (3) |
|
3.6 Examples of Higher Topologies Computations |
|
|
129 | (6) |
|
|
129 | (6) |
|
3.7 Summary, Generating Functions of Maps |
|
|
135 | (7) |
|
|
142 | (3) |
|
|
145 | (24) |
|
4.1 Formal Integrals and Extrema of V |
|
|
146 | (6) |
|
4.1.1 A Digression on Convergent Normal Matrix Integrals |
|
|
147 | (2) |
|
4.1.2 Definition of Formal Cubic Integrals |
|
|
149 | (1) |
|
4.1.3 General Definition of Formal Multicut Integrals |
|
|
150 | (2) |
|
4.2 What Are Multicut Formal Integrals Counting? |
|
|
152 | (3) |
|
4.2.1 Discrete Surfaces Made of Di-polygons |
|
|
153 | (2) |
|
4.2.2 Formal Multicut Matrix Integrals and Nodal Surfaces |
|
|
155 | (1) |
|
4.3 Solution of Loop Equations |
|
|
155 | (11) |
|
4.3.1 Multicut Lemma and Cycle Integrals |
|
|
155 | (4) |
|
4.3.2 Disc Generating Function |
|
|
159 | (1) |
|
4.3.3 Higher Genus Algebraic Equations |
|
|
160 | (1) |
|
4.3.4 Geometry of the Spectral Curve |
|
|
161 | (3) |
|
4.3.5 Cylinder Generating Function |
|
|
164 | (1) |
|
|
164 | (2) |
|
4.4 Maps Without Boundaries |
|
|
166 | (1) |
|
|
167 | (2) |
|
|
169 | (68) |
|
5.1 Introduction to Large Maps and Double Scaling Limit |
|
|
170 | (5) |
|
5.1.1 Large Size Asymptotics and Singularities |
|
|
170 | (1) |
|
5.1.2 Example: Quadrangulations |
|
|
171 | (2) |
|
5.1.3 About Double Scaling Limits and Liouville Quantum Gravity |
|
|
173 | (2) |
|
5.2 Critical Spectral Curve |
|
|
175 | (7) |
|
5.2.1 Spectral Curves with Cusps |
|
|
175 | (3) |
|
5.2.2 Multicritical Points |
|
|
178 | (4) |
|
5.3 Computation of the Asymptotic Wn(g)'s |
|
|
182 | (13) |
|
5.3.1 Double Scaling Limit of Fg |
|
|
185 | (2) |
|
5.3.2 Critical Exponents and KPZ |
|
|
187 | (4) |
|
5.3.3 Example: Triangulations and Pure Gravity |
|
|
191 | (4) |
|
|
195 | (39) |
|
5.4.1 Introduction to Minimal Models |
|
|
195 | (1) |
|
|
196 | (2) |
|
|
198 | (1) |
|
|
199 | (1) |
|
5.4.5 The Linear ψ System |
|
|
200 | (1) |
|
5.4.6 Kernel and Correlators |
|
|
201 | (10) |
|
5.4.7 Example: (1,2) Minimal Model, the Airy Kernel |
|
|
211 | (3) |
|
|
214 | (3) |
|
|
217 | (1) |
|
5.4.10 Topological Expansion |
|
|
218 | (4) |
|
|
222 | (5) |
|
5.4.12 Link with Symplectic Invariants |
|
|
227 | (2) |
|
|
229 | (1) |
|
5.4.14 Large N and Large s |
|
|
230 | (3) |
|
5.4.15 Example: Pure Gravity Case |
|
|
233 | (1) |
|
5.5 Summary: Large Maps and Liouville Gravity |
|
|
234 | (1) |
|
|
235 | (2) |
|
6 Counting Riemann Surfaces |
|
|
237 | (98) |
|
6.1 Moduli Spaces of Riemann Surfaces |
|
|
237 | (12) |
|
6.1.1 Examples of Moduli Spaces |
|
|
238 | (4) |
|
6.1.2 Stability and Unstability |
|
|
242 | (2) |
|
|
244 | (5) |
|
6.2 Informal Introduction to Intersection Numbers |
|
|
249 | (5) |
|
6.2.1 Informal Introduction to Chern Classes |
|
|
250 | (2) |
|
6.2.2 Intersection Numbers of Cotangent Bundles |
|
|
252 | (2) |
|
6.3 Parametrizing Surfaces |
|
|
254 | (35) |
|
6.3.1 Teichmuller Hyperbolic Foliation |
|
|
254 | (4) |
|
|
258 | (4) |
|
|
262 | (3) |
|
6.3.4 Computing Intersection Numbers |
|
|
265 | (2) |
|
6.3.5 Generating Function for Intersection Numbers |
|
|
267 | (3) |
|
6.3.6 Generating Function and Kontsevich Integral |
|
|
270 | (6) |
|
6.3.7 Generating Functions with Marked Points |
|
|
276 | (13) |
|
6.4 Combinatorics of Graphs and Recursions |
|
|
289 | (33) |
|
6.4.1 Edge Removal and Tutte's Equations |
|
|
292 | (3) |
|
6.4.2 Disc Amplitude (Rooted Planar Strebel Graphs) |
|
|
295 | (2) |
|
|
297 | (2) |
|
6.4.4 The Pair of Pants (0,3) |
|
|
299 | (1) |
|
|
300 | (2) |
|
|
302 | (7) |
|
6.4.7 Topological Recursion for Intersection Numbers |
|
|
309 | (1) |
|
|
310 | (2) |
|
6.4.9 Computation of Fg = ωg.0 |
|
|
312 | (10) |
|
6.5 Large Maps, Liouville Gravity and Topological Gravity |
|
|
322 | (1) |
|
6.6 Weil-Petersson Volumes |
|
|
323 | (3) |
|
6.7 Summary: Riemann Surfaces and Topological Gravity |
|
|
326 | (5) |
|
|
331 | (4) |
|
7 Topological Recursion and Symplectic Invariants |
|
|
335 | (30) |
|
7.1 Symplectic Invariants of Spectral Curves |
|
|
335 | (10) |
|
|
335 | (3) |
|
7.1.2 Geometry of the Spectral Curve |
|
|
338 | (7) |
|
|
345 | (2) |
|
7.3 Deformations of Symplectic Invariants |
|
|
347 | (9) |
|
7.3.1 Spectral Curve Deformation |
|
|
347 | (2) |
|
|
349 | (4) |
|
|
353 | (3) |
|
7.4 Diagrammatic Representation |
|
|
356 | (7) |
|
|
356 | (1) |
|
7.4.2 Example of g1(2)(p) |
|
|
357 | (1) |
|
|
358 | (2) |
|
|
360 | (3) |
|
7.4.5 Remark: Pants Gluings |
|
|
363 | (1) |
|
|
363 | (2) |
|
|
365 | (44) |
|
|
366 | (5) |
|
|
368 | (3) |
|
|
371 | (5) |
|
8.2.1 Equation for Generating Functions |
|
|
375 | (1) |
|
8.3 Solution of Loop Equations |
|
|
376 | (5) |
|
8.3.1 The Disc: Spectral Curve |
|
|
376 | (4) |
|
8.3.2 Example: Ising Model on Quadrangulations |
|
|
380 | (1) |
|
8.3.3 All Topologies Generating Functions |
|
|
381 | (1) |
|
8.4 Mixed Boundary Conditions |
|
|
381 | (23) |
|
8.4.1 Maps with Mixed Boundaries |
|
|
382 | (15) |
|
|
397 | (7) |
|
|
404 | (2) |
|
|
406 | (3) |
Bibliography |
|
409 | (4) |
Index |
|
413 | |