Muutke küpsiste eelistusi

Cryptology: Classical and Modern with Maplets [Kõva köide]

(Appalachian State University, Boone, North Carolina, USA), (Radford University, Virginia, USA)
  • Formaat: Hardback, 548 pages, kõrgus x laius: 235x156 mm, kaal: 930 g, 35 Tables, black and white; 163 Illustrations, black and white
  • Sari: Chapman & Hall/CRC Cryptography and Network Security Series
  • Ilmumisaeg: 20-Jun-2012
  • Kirjastus: Taylor & Francis Inc
  • ISBN-10: 1439872414
  • ISBN-13: 9781439872413
Teised raamatud teemal:
  • Kõva köide
  • Hind: 138,12 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 548 pages, kõrgus x laius: 235x156 mm, kaal: 930 g, 35 Tables, black and white; 163 Illustrations, black and white
  • Sari: Chapman & Hall/CRC Cryptography and Network Security Series
  • Ilmumisaeg: 20-Jun-2012
  • Kirjastus: Taylor & Francis Inc
  • ISBN-10: 1439872414
  • ISBN-13: 9781439872413
Teised raamatud teemal:
Easily Accessible to Students with Nontechnical Backgrounds In a clear, nontechnical manner, Cryptology: Classical and Modern with Maplets explains how fundamental mathematical concepts are the bases of cryptographic algorithms. Designed for students with no background in college-level mathematics, the book assumes minimal mathematical prerequisites and incorporates student-friendly Maplets throughout that provide practical examples of the techniques used.



Technology Resource By using the Maplets, students can complete complicated tasks with relative ease. They can encrypt, decrypt, and cryptanalyze messages without the burden of understanding programming or computer syntax. The authors explain topics in detail first before introducing one or more Maplets. All Maplet material and exercises are given in separate, clearly labeled sections. Instructors can omit the Maplet sections without any loss of continuity and non-Maplet examples and exercises can be completed with, at most, a simple hand-held calculator. The Maplets are available for download at www.radford.edu/~npsigmon/cryptobook.html.



A Gentle, Hands-On Introduction to Cryptology After introducing elementary methods and techniques, the text fully develops the Enigma cipher machine and Navajo code used during World War II, both of which are rarely found in cryptology textbooks. The authors then demonstrate mathematics in cryptology through monoalphabetic, polyalphabetic, and block ciphers. With a focus on public-key cryptography, the book describes RSA ciphers, the DiffieHellman key exchange, and ElGamal ciphers. It also explores current U.S. federal cryptographic standards, such as the AES, and explains how to authenticate messages via digital signatures, hash functions, and certificates.

Arvustused

All told, the authors have done an admirable job of balancing the competing goals of producing a text that can be read by people with limited mathematics background, but at the same time is maintained at a college level. This is not "cryptology for dummies", watered down to the point of uselessness, but is instead a book that, though accessible, requires an appropriate amount of effort and thought on the part of the reader. This is a book that not only meets but exceeds its goal of being a suitable text for a course in cryptology for non-majors. It is highly recommended for anybody teaching such a course, and it certainly belongs in any good university library. Mark Hunacek, MAA Reviews, September 2012

1 Introduction to Cryptology
1(6)
1.1 Basic Terminology
2(1)
1.2 Cryptology in Practice
2(2)
1.3 Why Study Cryptology?
4(3)
2 Substitution Ciphers
7(26)
2.1 Keyword Substitution Ciphers
7(4)
2.1.1 Simple Keyword Substitution Ciphers
8(1)
2.1.2 Keyword Columnar Substitution Ciphers
9(2)
2.2 A Maplet for Substitution Ciphers
11(4)
2.3 Cryptanalysis of Substitution Ciphers
15(7)
2.4 A Maplet for Cryptanalysis of Substitution Ciphers
22(4)
2.5 Playfair Ciphers
26(3)
2.6 A Maplet for Playfair Ciphers
29(4)
3 Transposition Ciphers
33(30)
3.1 Columnar Transposition Ciphers
33(6)
3.1.1 Simple Columnar Transposition Ciphers
34(2)
3.1.2 Keyword Columnar Transposition Ciphers
36(3)
3.2 A Maplet for Transposition Ciphers
39(4)
3.3 Cryptanalysis of Transposition Ciphers
43(5)
3.3.1 Cryptanalysis of Simple Columnar Ciphers
43(2)
3.3.2 Cryptanalysis of Keyword Columnar Ciphers
45(3)
3.4 Maplets for Cryptanalysis of Transposition Ciphers
48(7)
3.5 ADFGX and ADFGVX Ciphers
55(3)
3.6 A Maplet for ADFGX and ADFGVX Ciphers
58(5)
4 The Enigma Machine and Navajo Code
63(50)
4.1 The Enigma Cipher Machine
64(17)
4.2 A Maplet for the Enigma Cipher Machine
81(5)
4.3 Combinatorics
86(10)
4.3.1 The Multiplication Principle
86(2)
4.3.2 Permutations
88(3)
4.3.3 Combinations
91(5)
4.4 Cryptanalysis of the Enigma Cipher Machine
96(7)
4.4.1 Calculating the Number of Initial Configurations
96(3)
4.4.2 Some History of Cryptanalysis of the Enigma
99(4)
4.5 The Navajo Code
103(5)
4.6 A Maplet for the Navajo Code
108(5)
5 Shift and Affine Ciphers
113(44)
5.1 Modular Arithmetic
113(11)
5.2 A Maplet for Modular Reduction
124(2)
5.3 Shift Ciphers
126(4)
5.4 A Maplet for Shift Ciphers
130(3)
5.5 Cryptanalysis of Shift Ciphers
133(3)
5.6 A Maplet for Cryptanalysis of Shift Ciphers
136(4)
5.7 Affine Ciphers
140(3)
5.8 A Maplet for Affine Ciphers
143(4)
5.9 Cryptanalysis of Affine Ciphers
147(3)
5.10 A Maplet for Cryptanalysis of Affine Ciphers
150(7)
6 Alberti and Vigenere Ciphers
157(72)
6.1 Alberti Ciphers
158(4)
6.2 A Maplet for Alberti Ciphers
162(8)
6.3 Vigenere Ciphers
170(6)
6.3.1 Vigenere Autokey Ciphers
170(3)
6.3.2 Vigenere Keyword Ciphers
173(3)
6.4 A Maplet for Vigenere Keyword Ciphers
176(2)
6.5 Probability
178(9)
6.6 The Friedman Test
187(6)
6.6.1 The Index of Coincidence
187(4)
6.6.2 Estimating the Keyword Length
191(2)
6.7 A Maplet for the Friedman Test
193(3)
6.8 The Kasiski Test
196(2)
6.9 A Maplet for the Kasiski Test
198(4)
6.10 Cryptanalysis of Vigenere Keyword Ciphers
202(21)
6.10.1 Finding the Keyword Length Using Signatures
203(5)
6.10.2 Finding the Keyword Letters Using Scrawls
208(15)
6.11 A Maplet for Cryptanalysis of Vigenere Keyword Ciphers
223(6)
7 Hill Ciphers
229(46)
7.1 Matrices
229(17)
7.1.1 Definition and Basic Terminology
230(1)
7.1.2 Matrix Operations
231(5)
7.1.3 Identity and Inverse Matrices
236(3)
7.1.4 Matrices with Modular Arithmetic
239(7)
7.2 A Maplet for Matrix Computations
246(6)
7.3 Hill Ciphers
252(9)
7.4 A Maplet for Hill Ciphers
261(3)
7.5 Cryptanalysis of Hill Ciphers
264(5)
7.6 A Maplet for Cryptanalysis of Hill Ciphers
269(6)
8 RSA Ciphers
275(54)
8.1 Introduction to Public-Key Ciphers
275(3)
8.2 Introduction to RSA Ciphers
278(3)
8.3 The Euclidean Algorithm
281(7)
8.4 Maplets for the Euclidean Algorithm
288(3)
8.5 Modular Exponentiation
291(5)
8.6 A Maplet for Modular Exponentiation
296(2)
8.7 ASCII
298(1)
8.8 RSA Ciphers
298(6)
8.9 Maplets for RSA Ciphers
304(7)
8.10 Cryptanalysis of RSA Ciphers
311(5)
8.11 A Maplet for Cryptanalysis of RSA Ciphers
316(2)
8.12 Primality Testing
318(4)
8.13 Integer Factorization
322(4)
8.14 The RSA Factoring Challenges
326(3)
9 ElGamal Ciphers
329(42)
9.1 The Diffie--Hellman Key Exchange
330(4)
9.2 Maplets for the Diffie--Hellman Key Exchange
334(6)
9.3 Discrete Logarithms
340(3)
9.4 A Maplet for Discrete Logarithms
343(3)
9.5 ElGamal Ciphers
346(8)
9.6 Maplets for ElGamal Ciphers
354(7)
9.7 Cryptanalysis of ElGamal Ciphers
361(6)
9.8 A Maplet for Cryptanalysis of ElGamal Ciphers
367(4)
10 The Advanced Encryption Standard
371(64)
10.1 Representations of Numbers
371(9)
10.1.1 Binary
372(3)
10.1.2 Hexadecimal
375(5)
10.2 A Maplet for Base Conversions
380(3)
10.3 Stream Ciphers
383(5)
10.4 A Maplet for Stream Ciphers
388(4)
10.5 AES Preliminaries
392(11)
10.5.1 Plaintext Format
392(2)
10.5.2 The S-Box
394(2)
10.5.3 Key Format and Generation
396(7)
10.6 AES Encryption
403(12)
10.6.1 Overview
404(1)
10.6.2 The Operations
405(10)
10.7 AES Decryption
415(13)
10.8 A Maplet for AES Ciphers
428(6)
10.9 AES Security
434(1)
11 Message Authentication
435(58)
11.1 RSA Signatures
436(9)
11.2 Hash Functions
445(8)
11.3 RSA Signatures with Hashing
453(6)
11.4 Maplets for RSA Signatures
459(11)
11.5 The Man-in-the-Middle Attack
470(4)
11.6 A Maplet for the Man-in-the-Middle Attack
474(2)
11.7 Public-Key Infrastructures
476(7)
11.7.1 Key Formation
477(1)
11.7.2 Web of Trust
478(1)
11.7.3 X.509 Certificates
479(4)
11.8 Maplets for X.509 Certificates
483(10)
Bibliography 493(4)
Hints or Answers to Selected Exercises 497(36)
Index 533
Richard E. Klima is a professor in the Department of Mathematical Sciences at Appalachian State University. Prior to Appalachian State, Dr. Klima was a cryptologic mathematician at the National Security Agency. He earned a Ph.D. in applied mathematics from North Carolina State University. His research interests include cryptology, error-correcting codes, applications of linear and abstract algebra, and election theory.



Neil P. Sigmon is an associate professor in the Department of Mathematics and Statistics at Radford University. Dr. Sigmon earned a Ph.D. in applied mathematics from North Carolina State University. His research interests include cryptology, the use of technology to illustrate mathematical concepts, and applications of linear and abstract algebra.