Muutke küpsiste eelistusi

Data Analytics for Renewable Energy Integration. Technologies, Systems and Society: 6th ECML PKDD Workshop, DARE 2018, Dublin, Ireland, September 10, 2018, Revised Selected Papers 2018 ed. [Pehme köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 167 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 65 Illustrations, color; 10 Illustrations, black and white; X, 167 p. 75 illus., 65 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 11325
  • Ilmumisaeg: 17-Nov-2018
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030043029
  • ISBN-13: 9783030043025
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 167 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 65 Illustrations, color; 10 Illustrations, black and white; X, 167 p. 75 illus., 65 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 11325
  • Ilmumisaeg: 17-Nov-2018
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030043029
  • ISBN-13: 9783030043025
This book constitutes the revised selected papers from the 6th ECML PKDD Workshop on Data Analytics for Renewable Energy Integration, DARE 2018, held in Dublin, Ireland, in September 2018.





The 9 papers presented in this volume were carefully reviewed and selected for inclusion in this book and handle topics such as time series forecasting, the detection of faults, cyber security, smart grid and smart cities, technology integration, demand response, and many others.

Mathematical Optimization of Design Parameters of Photovoltaic Module.- Fused Lasso Dimensionality Reduction of Highly Correlated NWP Features.- Sampling Strategies for Representative Time Series in Load Flow Calculations.- Probabilistic Graphs for Sensor Data-driven Modelling of Power Systems at Scale.- Renewable Energy Integration: Bayesian Networks for Probabilistic State Estimation.- Deep Learning for Wave Height Classification in Satellite Images for Offshore Wind Access.- Contribution Machine learning as Surrogate to Building Performance Simulation: A Building Design Optimization Application.- Clustering River Basins using Time-Series Data Mining on Hydroelectric Energy Generation.- Short-Term Electricity Consumption Forecast using Datasets of Various Granularities?.- Intelligent Monitoring of Transformer Insulation using Convolutional Neural Networks.- Nonintrusive Load Monitoring based on Deep Learning.- Urban Climate Data Sensing, Warehousing, and Analysis: A Case Study in the City of Abu Dhabi, United Arab Emirates.