Muutke küpsiste eelistusi

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III) 1st ed. 2017 [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 553 pages, kõrgus x laius: 235x155 mm, 155 Illustrations, color; 61 Illustrations, black and white; XXXVI, 553 p. 216 illus., 155 illus. in color., 1 Hardback
  • Ilmumisaeg: 09-Jan-2017
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319434144
  • ISBN-13: 9783319434148
Teised raamatud teemal:
  • Kõva köide
  • Hind: 169,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 198,99 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 553 pages, kõrgus x laius: 235x155 mm, 155 Illustrations, color; 61 Illustrations, black and white; XXXVI, 553 p. 216 illus., 155 illus. in color., 1 Hardback
  • Ilmumisaeg: 09-Jan-2017
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319434144
  • ISBN-13: 9783319434148
Teised raamatud teemal:
Memorial Volume for Yoshi K. Sasaki

This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Variational Data Assimilation: Optimization and Optimal Control
1(54)
Francois-Xavier Le Dimet
Ionel M. Navon
Razvan Stefanescu
Data Assimilation for Coupled Modeling Systems
55(16)
Milija Zupanski
Representer-Based Variational Data Assimilation Systems: A Review
71(12)
Boon S. Chua
Liang Xu
Adjoint-Free 4D Variational Data Assimilation into Regional Models
83(32)
M. Yaremchuk
P. Martin
G. Panteleev
C. Beattie
A. Koch
Convergence of a Class of Weak Solutions to the Strong Solution of a Linear Constrained Quadratic Minimization Problem: A Direct Proof Using Matrix Identities
115(6)
S. Lakshmivarahan
Information Quantification for Data Assimilation
121(20)
Sarah King
Wei Kang
Liang Xu
Nancy L. Baker
Quantification of Forecast Uncertainty and Data Assimilation Using Wiener's Polynomial Chaos Expansion
141(36)
Junjun Hu
S. Lakshmivarahan
John M. Lewis
The Treatment, Estimation, and Issues with Representation Error Modelling
177(18)
Daniel Hodyss
Elizabeth Satterfield
Soil Moisture Data Assimilation
195(24)
Viviana Maggioni
Paul R. Houser
Surface Data Assimilation and Near-Surface Weather Prediction over Complex Terrain
219(22)
Zhaoxia Pu
Recent Developments in Bottom Topography Mapping Using Inverse Methods
241(18)
Edward D. Zaron
The Impact of Doppler Wind Lidar Measurements on High-Impact Weather Forecasting: Regional OSSE and Data Assimilation Studies
259(26)
Zhaoxia Pu
Lei Zhang
Shixuan Zhang
Bruce Gentry
David Emmitt
Belay Demoz
Robert Adas
A Three-Dimensional Variational Radar Data Assimilation Scheme Developed for Convective Scale NWP
285(42)
Jidong Gao
Data Assimilation Experiments of Refractivity Observed by JMA Operational Radar
327(10)
Hiromu Seko
Ei-ichi Sato
Hiroshi Yamauchi
Toshitaka Tsuda
Assessment of Radiative Effect of Hydrometeors in Rapid Radiative Transfer Model in Support of Satellite Cloud and Precipitation Microwave Data Assimilation
337(24)
Peiming Dong
Wei Han
Wei Li
Shuanglong Jin
Toward New Applications of the Adjoint Sensitivity Tools in Data Assimilation
361(22)
Dacian N. Daescu
Rolf H. Langland
GPS PWV Assimilation with the JMA Nonhydrostatic 4DVAR and Cloud Resolving Ensemble Forecast for the 2008 August Tokyo Metropolitan Area Local Heavy Rainfalls
383(22)
Kazuo Saito
Yoshinori Shoji
Seiji Origuchi
Le Due
Validation and Operational Implementation of the Navy Coastal Ocean Model Four Dimensional Variational Data Assimilation System (NCOM 4DVAR) in the Okinawa Trough
405(24)
Scott Smith
Hans Ngodock
Matthew Carrier
Jay Shriver
Philip Muscarella
Innocent Souopgui
Stratospheric and Mesospheric Data Assimilation: The Role of Middle Atmospheric Dynamics
429(26)
Saroja Polavarapu
Manuel Pulido
A Coupled Atmosphere-Chemistry Data Assimilation: Impact of Ozone Observation on Structure of a Tropical Cyclone
455(12)
Seon Ki Park
Sujeong Lim
Milija Zupanski
Adjoint Sensitivity with a Nested Limited Area Atmospheric Model
467(16)
Clark Amerault
On the Impact of the Diabatic Component in the Forecast Sensitivity Observation Impact Diagnostics
483(30)
Marta Janiskova
Carla Cardinali
Application of Conditional Nonlinear Optimal Perturbation to Target Observations for High-Impact Ocean-Atmospheric Environmental Events
513(14)
Qiang Wang
Mu Mu
Responses of Terrestrial Ecosystem to Climate Change: Results from Approach of Conditional Nonlinear Optimal Perturbation of Parameters
527(22)
Guodong Sun
Mu Mu
Index 549
Seon Ki Park is Professor of Environmental Science and Engineering and Director of the Severe Storm Research Center at the Ewha Womans University in Seoul, Korea. He obtained a Ph.D. in Meteorology from the University of Oklahoma, M.S. and B.S. in Meteorology from the Seoul National University, Korea. He had worked as a research scientist at University of Oklahoma, University of Maryland and NASA/Goddard Space Flight Center.

Liang Xu is a meteorologist in the data assimilation section, Marine Meteorology Division, Naval Research Laboratory in Monterey, CA. In the past several years, Dr. Xu and his team have been developing, testing, and transitioning the US Navys weak constraint mesoscale atmospheric four dimensional variational (4D-Var) data assimilation system, COAMPS-AR, to operation. He is also working on the data assimilation aspects of the land surface processes.