Muutke küpsiste eelistusi

Data-Driven Evolutionary Optimization: Integrating Evolutionary Computation, Machine Learning and Data Science 2021 ed. [Pehme köide]

  • Formaat: Paperback / softback, 393 pages, kõrgus x laius: 235x155 mm, kaal: 640 g, 76 Illustrations, color; 83 Illustrations, black and white; XXV, 393 p. 159 illus., 76 illus. in color., 1 Paperback / softback
  • Sari: Studies in Computational Intelligence 975
  • Ilmumisaeg: 30-Jun-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030746429
  • ISBN-13: 9783030746421
Teised raamatud teemal:
  • Pehme köide
  • Hind: 159,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 188,09 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 393 pages, kõrgus x laius: 235x155 mm, kaal: 640 g, 76 Illustrations, color; 83 Illustrations, black and white; XXV, 393 p. 159 illus., 76 illus. in color., 1 Paperback / softback
  • Sari: Studies in Computational Intelligence 975
  • Ilmumisaeg: 30-Jun-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030746429
  • ISBN-13: 9783030746421
Teised raamatud teemal:
Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques.  New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available.





This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.
Introduction to Optimization.- Classical Optimization
Algorithms.- Evolutionary and Swarm Optimization.- Introduction to Machine
Learning.- Data-Driven Surrogate-Assisted Evolutionary Optimization.-
Multi-Surrogate-Assisted Single-Objective Optimization.- Surrogate-Assisted
Multi-Objective Evolutionary Optimization.