|
|
1 | (34) |
|
|
1 | (4) |
|
|
5 | (2) |
|
1.3 Relation to Different Research Fields |
|
|
7 | (5) |
|
1.3.1 Interaction Studies |
|
|
7 | (2) |
|
|
9 | (2) |
|
1.3.3 Neuroscience and Experimental Psychology |
|
|
11 | (1) |
|
1.3.4 Machine Learning and Data Mining |
|
|
11 | (1) |
|
|
11 | (1) |
|
1.4 Interaction Scenarios |
|
|
12 | (2) |
|
1.5 Nonverbal Communication in Human-Human Interactions |
|
|
14 | (3) |
|
1.6 Nonverbal Communication in Human-Robot Interactions |
|
|
17 | (4) |
|
|
18 | (1) |
|
|
18 | (1) |
|
1.6.3 Spontaneous Nonverbal Behavior |
|
|
19 | (2) |
|
1.7 Behavioral Robotic Architectures |
|
|
21 | (3) |
|
1.7.1 Reactive Architectures |
|
|
21 | (1) |
|
1.7.2 Hybrid Architectures |
|
|
22 | (1) |
|
1.7.3 HRI Specific Architectures |
|
|
23 | (1) |
|
1.8 Learning from Demonstrations |
|
|
24 | (2) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
28 | (7) |
|
|
28 | (7) |
|
Part I Time Series Mining |
|
|
|
2 Mining Time-Series Data |
|
|
35 | (50) |
|
|
35 | (1) |
|
2.2 Models of Time-Series Generating Processes |
|
|
36 | (14) |
|
2.2.1 Linear Additive Time-Series Model |
|
|
36 | (1) |
|
|
37 | (1) |
|
2.2.3 Moving Average Processes |
|
|
38 | (2) |
|
2.2.4 Auto-Regressive Processes |
|
|
40 | (1) |
|
2.2.5 ARMA and ARIMA Processes |
|
|
40 | (1) |
|
2.2.6 State-Space Generation |
|
|
41 | (1) |
|
|
42 | (1) |
|
2.2.8 Hidden Markov Models |
|
|
43 | (2) |
|
2.2.9 Gaussian Mixture Models |
|
|
45 | (2) |
|
2.2.10 Gaussian Processes |
|
|
47 | (3) |
|
2.3 Representation and Transformations |
|
|
50 | (17) |
|
2.3.1 Piecewise Aggregate Approximation |
|
|
51 | (1) |
|
2.3.2 Symbolic Aggregate Approximation |
|
|
52 | (2) |
|
2.3.3 Discrete Fourier Transform |
|
|
54 | (1) |
|
2.3.4 Discrete Wavelet Transform |
|
|
55 | (1) |
|
2.3.5 Singular Spectrum Analysis |
|
|
56 | (11) |
|
2.4 Learning Time-Series Models from Data |
|
|
67 | (10) |
|
2.4.1 Learning an AR Process |
|
|
67 | (3) |
|
2.4.2 Learning an ARMA Process |
|
|
70 | (3) |
|
2.4.3 Learning a Hidden Markov Model |
|
|
73 | (3) |
|
2.4.4 Learning a Gaussian Mixture Model |
|
|
76 | (1) |
|
2.4.5 Model Selection Problem |
|
|
77 | (1) |
|
2.5 Time Series Preprocessing |
|
|
77 | (5) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
2.5.5 Dimensionality Reduction |
|
|
80 | (1) |
|
2.5.6 Dynamic Time Warping |
|
|
81 | (1) |
|
|
82 | (3) |
|
|
83 | (2) |
|
|
85 | (24) |
|
3.1 Approaches to CP Discovery |
|
|
86 | (1) |
|
3.2 Markov Process CP Approach |
|
|
87 | (3) |
|
|
90 | (3) |
|
3.4 Change in Stochastic Processes |
|
|
93 | (1) |
|
3.5 Singular Spectrum Analysis Based Methods |
|
|
94 | (4) |
|
3.5.1 Alternative SSA CPD Methods |
|
|
98 | (1) |
|
|
98 | (1) |
|
3.7 Comparing CPD Algorithms |
|
|
99 | (6) |
|
3.7.1 Confusion Matrix Measures |
|
|
100 | (1) |
|
3.7.2 Divergence Measures |
|
|
101 | (3) |
|
3.7.3 Equal Sampling Rate |
|
|
104 | (1) |
|
3.8 CPD for Measuring Naturalness in HRI |
|
|
105 | (2) |
|
|
107 | (2) |
|
|
107 | (2) |
|
|
109 | (40) |
|
4.1 Motif Discovery Problem(s) |
|
|
109 | (1) |
|
4.2 Motif Discovery in Discrete Sequences |
|
|
110 | (8) |
|
4.2.1 Projections Algorithm |
|
|
114 | (1) |
|
|
115 | (3) |
|
4.3 Discretization Algorithms |
|
|
118 | (6) |
|
4.3.1 MDL Extended Motif Discovery |
|
|
120 | (4) |
|
4.4 Exact Motif Discovery |
|
|
124 | (10) |
|
|
125 | (2) |
|
|
127 | (2) |
|
|
129 | (2) |
|
4.4.4 Motif Discovery Using Scale Normalized Distance Function (MN) |
|
|
131 | (3) |
|
4.5 Stochastic Motif Discovery |
|
|
134 | (2) |
|
4.5.1 Catalano's Algorithm |
|
|
134 | (2) |
|
4.6 Constrained Motif Discovery |
|
|
136 | (7) |
|
|
136 | (2) |
|
|
138 | (1) |
|
4.6.3 Greedy Motif Extension |
|
|
138 | (2) |
|
4.6.4 Shift-Density Constrained Motif Discovery |
|
|
140 | (3) |
|
4.7 Comparing Motif Discovery Algorithms |
|
|
143 | (1) |
|
4.8 Real World Applications |
|
|
144 | (2) |
|
4.8.1 Gesture Discovery from Accelerometer Data |
|
|
144 | (1) |
|
4.8.2 Differential Drive Motion Pattern Discovery |
|
|
145 | (1) |
|
4.8.3 Basic Motions Discovery from Skeletal Tracking Data |
|
|
145 | (1) |
|
|
146 | (3) |
|
|
147 | (2) |
|
|
149 | (22) |
|
|
150 | (1) |
|
5.2 Correlation and Causation |
|
|
150 | (1) |
|
5.3 Granger-Causality and Its Extensions |
|
|
151 | (2) |
|
5.4 Convergent Cross Mapping |
|
|
153 | (9) |
|
|
162 | (3) |
|
5.6 Application to Guided Navigation |
|
|
165 | (1) |
|
5.6.1 Robot Guided Navigation |
|
|
165 | (1) |
|
|
166 | (5) |
|
|
166 | (5) |
|
Part II Autonomously Social Robots |
|
|
|
6 Introduction to Social Robotics |
|
|
171 | (22) |
|
6.1 Engineering Social Robots |
|
|
171 | (3) |
|
6.2 Human Social Response to Robots |
|
|
174 | (3) |
|
6.3 Social Robot Architectures |
|
|
177 | (13) |
|
6.3.1 C4 Cognitive Architecture |
|
|
177 | (4) |
|
|
181 | (4) |
|
|
185 | (5) |
|
|
190 | (3) |
|
|
190 | (3) |
|
7 Imitation and Social Robotics |
|
|
193 | (14) |
|
|
193 | (3) |
|
7.2 Imitation in Animals and Humans |
|
|
196 | (4) |
|
7.3 Social Aspects of Imitation in Robotics |
|
|
200 | (4) |
|
7.3.1 Imitation for Bootstrapping Social Understanding |
|
|
201 | (1) |
|
7.3.2 Back Imitation for Improving Perceived Skill |
|
|
202 | (2) |
|
|
204 | (3) |
|
|
204 | (3) |
|
8 Theoretical Foundations |
|
|
207 | (22) |
|
8.1 Autonomy, Sociality and Embodiment |
|
|
207 | (4) |
|
|
211 | (7) |
|
|
218 | (6) |
|
8.3.1 Traditional Intention Modeling |
|
|
219 | (2) |
|
8.3.2 Intention in Psychology |
|
|
221 | (1) |
|
8.3.3 Challenges for the Theory of Intention |
|
|
222 | (1) |
|
8.3.4 The Proposed Model of Intention |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
225 | (4) |
|
|
225 | (4) |
|
9 The Embodied Interactive Control Architecture |
|
|
229 | (16) |
|
|
229 | (1) |
|
|
230 | (3) |
|
|
233 | (1) |
|
|
234 | (3) |
|
9.4.1 Behavior Level Integration |
|
|
236 | (1) |
|
9.4.2 Action Level Integration |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
238 | (2) |
|
9.7 Application to Explanation Scenario |
|
|
240 | (2) |
|
9.7.1 Fixed Structure Gaze Controller |
|
|
241 | (1) |
|
9.8 Application to Collaborative Navigation |
|
|
242 | (1) |
|
|
243 | (2) |
|
|
243 | (2) |
|
|
245 | (10) |
|
|
245 | (2) |
|
|
247 | (2) |
|
10.3 Down-Up-Down Behavior Generation (DUD) |
|
|
249 | (3) |
|
10.4 Mirror Training (MT) |
|
|
252 | (1) |
|
|
253 | (2) |
|
|
253 | (2) |
|
11 Interaction Learning Through Imitation |
|
|
255 | (20) |
|
11.1 Stage 1: Interaction Babbling |
|
|
255 | (4) |
|
11.1.1 Learning Intentions |
|
|
256 | (1) |
|
11.1.2 Controller Generation |
|
|
257 | (2) |
|
11.2 Stage 2: Interaction Structure Learning |
|
|
259 | (7) |
|
11.2.1 Single-Layer Interaction Structure Learner |
|
|
259 | (2) |
|
11.2.2 Interaction Rule Induction |
|
|
261 | (3) |
|
11.2.3 Deep Interaction Structure Learner |
|
|
264 | (2) |
|
11.3 Stage 3: Adaptation During Interaction |
|
|
266 | (3) |
|
11.3.1 Single-Layer Interaction Adaptation Algorithm |
|
|
266 | (2) |
|
11.3.2 Deep Interaction Adaptation Algorithm |
|
|
268 | (1) |
|
|
269 | (3) |
|
11.4.1 Explanation Scenario |
|
|
270 | (1) |
|
11.4.2 Guided Navigation Scenario |
|
|
271 | (1) |
|
|
272 | (3) |
|
|
272 | (3) |
|
|
275 | (18) |
|
|
276 | (2) |
|
|
278 | (1) |
|
12.3 The Fluid Imitation Engine (FIE) |
|
|
279 | (1) |
|
|
280 | (6) |
|
12.4.1 Transforming Environmental State |
|
|
280 | (2) |
|
12.4.2 Calculating Correspondence Mapping |
|
|
282 | (4) |
|
12.5 Significance Estimator |
|
|
286 | (2) |
|
12.6 Self Initiation Engine |
|
|
288 | (1) |
|
12.7 Application to the Navigation Scenario |
|
|
288 | (2) |
|
|
290 | (3) |
|
|
290 | (3) |
|
13 Learning from Demonstration |
|
|
293 | (26) |
|
|
294 | (1) |
|
13.2 Optimal Demonstration Methods |
|
|
295 | (12) |
|
13.2.1 Inverse Optimal Control |
|
|
295 | (4) |
|
13.2.2 Inverse Reinforcement Learning |
|
|
299 | (3) |
|
13.2.3 Dynamic Movement Primitives |
|
|
302 | (5) |
|
|
307 | (6) |
|
13.3.1 Hidden Markov Models |
|
|
307 | (1) |
|
|
307 | (6) |
|
13.4 Symbolization Approaches |
|
|
313 | (3) |
|
|
316 | (3) |
|
|
316 | (3) |
|
|
319 | (6) |
Index |
|
325 | |