|
Part I Fundamental Concepts |
|
|
|
|
3 | (10) |
|
1.1 A Historical Overview of Data Warehousing |
|
|
4 | (4) |
|
1.2 Spatial and Spatiotemporal Data Warehouses |
|
|
8 | (1) |
|
1.3 New Domains and Challenges |
|
|
9 | (2) |
|
|
11 | (2) |
|
|
13 | (40) |
|
|
13 | (2) |
|
2.2 The Northwind Case Study |
|
|
15 | (1) |
|
2.3 Conceptual Database Design |
|
|
16 | (5) |
|
2.4 Logical Database Design |
|
|
21 | (22) |
|
2.4.1 The Relational Model |
|
|
21 | (6) |
|
|
27 | (3) |
|
2.4.3 Relational Query Languages |
|
|
30 | (13) |
|
2.5 Physical Database Design |
|
|
43 | (3) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
48 | (5) |
|
3 Data Warehouse Concepts |
|
|
53 | (36) |
|
3.1 Multidimensional Model |
|
|
53 | (6) |
|
|
56 | (1) |
|
|
57 | (2) |
|
|
59 | (13) |
|
|
72 | (4) |
|
3.4 Data Warehouse Architecture |
|
|
76 | (4) |
|
|
76 | (1) |
|
3.4.2 Data Warehouse Tier |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
3.4.5 Variations of the Architecture |
|
|
79 | (1) |
|
3.5 Data Warehouse Design |
|
|
80 | (1) |
|
3.6 Business Intelligence Tools |
|
|
81 | (3) |
|
3.6.1 Overview of Microsoft SQL Server Tools |
|
|
82 | (1) |
|
3.6.2 Overview of Pentaho Business Analytics |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (3) |
|
4 Conceptual Data Warehouse Design |
|
|
89 | (32) |
|
4.1 Conceptual Modeling of Data Warehouses |
|
|
89 | (5) |
|
|
94 | (12) |
|
4.2.1 Balanced Hierarchies |
|
|
95 | (1) |
|
4.2.2 Unbalanced Hierarchies |
|
|
95 | (1) |
|
4.2.3 Generalized Hierarchies |
|
|
96 | (2) |
|
4.2.4 Alternative Hierarchies |
|
|
98 | (1) |
|
4.2.5 Parallel Hierarchies |
|
|
99 | (3) |
|
4.2.6 Nonstrict Hierarchies |
|
|
102 | (4) |
|
4.3 Advanced Modeling Aspects |
|
|
106 | (4) |
|
4.3.1 Facts with Multiple Granularities |
|
|
106 | (1) |
|
4.3.2 Many-to-Many Dimensions |
|
|
106 | (4) |
|
4.4 Querying the Northwind Cube Using the OLAP Operations |
|
|
110 | (4) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
116 | (5) |
|
5 Logical Data Warehouse Design |
|
|
121 | (58) |
|
5.1 Logical Modeling of Data Warehouses |
|
|
121 | (2) |
|
5.2 Relational Data Warehouse Design |
|
|
123 | (3) |
|
5.3 Relational Implementation of the Conceptual Model |
|
|
126 | (2) |
|
|
128 | (1) |
|
5.5 Logical Representation of Hierarchies |
|
|
129 | (7) |
|
5.5.1 Balanced Hierarchies |
|
|
129 | (1) |
|
5.5.2 Unbalanced Hierarchies |
|
|
130 | (2) |
|
5.5.3 Generalized Hierarchies |
|
|
132 | (2) |
|
5.5.4 Alternative Hierarchies |
|
|
134 | (1) |
|
5.5.5 Parallel Hierarchies |
|
|
134 | (1) |
|
5.5.6 Nonstrict Hierarchies |
|
|
135 | (1) |
|
5.6 Advanced Modeling Aspects |
|
|
136 | (3) |
|
5.6.1 Facts with Multiple Granularities |
|
|
137 | (1) |
|
5.6.2 Many-to-Many Dimensions |
|
|
138 | (1) |
|
5.7 Slowly Changing Dimensions |
|
|
139 | (6) |
|
|
145 | (7) |
|
|
146 | (1) |
|
5.8.2 ROLLUP, CUBE, and GROUPING SETS |
|
|
147 | (2) |
|
|
149 | (3) |
|
5.9 Definition of the Northwind Cube in Analysis Services |
|
|
152 | (12) |
|
|
152 | (1) |
|
|
152 | (2) |
|
|
154 | (4) |
|
|
158 | (3) |
|
|
161 | (3) |
|
5.10 Definition of the Northwind Cube in Mondrian |
|
|
164 | (9) |
|
5.10.1 Schemas and Physical Schemas |
|
|
165 | (1) |
|
5.10.2 Cubes, Dimensions, Attributes, and Hierarchies |
|
|
166 | (5) |
|
|
171 | (2) |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
174 | (5) |
|
6 Querying Data Warehouses |
|
|
179 | (54) |
|
|
180 | (27) |
|
|
180 | (1) |
|
|
181 | (2) |
|
|
183 | (2) |
|
|
185 | (3) |
|
|
188 | (1) |
|
|
189 | (2) |
|
6.1.7 Calculated Members and Named Sets |
|
|
191 | (2) |
|
6.1.8 Relative Navigation |
|
|
193 | (3) |
|
6.1.9 Time Series Functions |
|
|
196 | (4) |
|
|
200 | (1) |
|
|
201 | (2) |
|
6.1.12 Top and Bottom Analysis |
|
|
203 | (2) |
|
6.1.13 Aggregation Functions |
|
|
205 | (2) |
|
6.2 Querying the Northwind Cube in MDX |
|
|
207 | (9) |
|
6.3 Querying the Northwind Data Warehouse in SQL |
|
|
216 | (9) |
|
6.4 Comparison of MDX and SQL |
|
|
225 | (2) |
|
|
227 | (1) |
|
|
228 | (2) |
|
|
230 | (1) |
|
|
230 | (3) |
|
Part II Implementation and Deployment |
|
|
|
7 Physical Data Warehouse Design |
|
|
233 | (52) |
|
7.1 Physical Modeling of Data Warehouses |
|
|
234 | (1) |
|
|
235 | (5) |
|
7.2.1 Algorithms Using Full Information |
|
|
237 | (2) |
|
7.2.2 Algorithms Using Partial Information |
|
|
239 | (1) |
|
7.3 Data Cube Maintenance |
|
|
240 | (6) |
|
7.4 Computation of a Data Cube |
|
|
246 | (10) |
|
|
247 | (3) |
|
7.4.2 Cube Size Estimation |
|
|
250 | (1) |
|
7.4.3 Partial Computation of a Data Cube |
|
|
251 | (5) |
|
7.5 Indexes for Data Warehouses |
|
|
256 | (5) |
|
|
257 | (2) |
|
|
259 | (1) |
|
|
260 | (1) |
|
7.6 Evaluation of Star Queries |
|
|
261 | (2) |
|
7.7 Data Warehouse Partitioning |
|
|
263 | (3) |
|
7.7.1 Queries in Partitioned Databases |
|
|
264 | (1) |
|
7.7.2 Managing Partitioned Databases |
|
|
265 | (1) |
|
7.7.3 Partitioning Strategies |
|
|
265 | (1) |
|
7.8 Physical Design in SQL Server and Analysis Services |
|
|
266 | (8) |
|
|
266 | (1) |
|
7.8.2 Partition-Aligned Indexed Views |
|
|
267 | (2) |
|
7.8.3 Column-Store Indexes |
|
|
269 | (1) |
|
7.8.4 Partitions in Analysis Services |
|
|
269 | (5) |
|
7.9 Query Performance in Analysis Services |
|
|
274 | (2) |
|
7.10 Query Performance in Mondrian |
|
|
276 | (2) |
|
|
276 | (1) |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
279 | (1) |
|
|
280 | (5) |
|
8 Extraction, Transformation, and Loading |
|
|
285 | (44) |
|
8.1 Business Process Modeling Notation |
|
|
286 | (5) |
|
8.2 Conceptual ETL Design Using BPMN |
|
|
291 | (4) |
|
8.3 Conceptual Design of the Northwind ETL Process |
|
|
295 | (14) |
|
8.4 Integration Services and Kettle |
|
|
309 | (3) |
|
8.4.1 Overview of Integration Services |
|
|
309 | (2) |
|
|
311 | (1) |
|
8.5 The Northwind ETL Process in Integration Services |
|
|
312 | (7) |
|
8.6 The Northwind ETL Process in Kettle |
|
|
319 | (5) |
|
|
324 | (1) |
|
|
325 | (1) |
|
|
325 | (1) |
|
|
326 | (3) |
|
9 Data Analytics: Exploiting the Data Warehouse |
|
|
329 | (56) |
|
|
330 | (32) |
|
|
331 | (2) |
|
9.1.2 Supervised Classification |
|
|
333 | (3) |
|
|
336 | (2) |
|
|
338 | (6) |
|
9.1.5 Pattern Growth Algorithm |
|
|
344 | (3) |
|
9.1.6 Sequential Patterns |
|
|
347 | (3) |
|
9.1.7 Data Mining in Analysis Services |
|
|
350 | (12) |
|
9.2 Key Performance Indicators |
|
|
362 | (8) |
|
9.2.1 Classification of Key Performance Indicators |
|
|
363 | (1) |
|
9.2.2 Guidelines for Defining Key Performance Indicators |
|
|
364 | (2) |
|
9.2.3 KPIs for the Northwind Case Study |
|
|
366 | (1) |
|
9.2.4 KPIs in Analysis Services |
|
|
367 | (3) |
|
|
370 | (8) |
|
9.3.1 Types of Dashboards |
|
|
371 | (1) |
|
9.3.2 Guidelines for Dashboard Design |
|
|
372 | (1) |
|
9.3.3 Dashboards in Reporting Services |
|
|
373 | (5) |
|
|
378 | (1) |
|
|
378 | (1) |
|
|
379 | (1) |
|
|
380 | (5) |
|
10 A Method for Data Warehouse Design |
|
|
385 | (42) |
|
10.1 Approaches to Data Warehouse Design |
|
|
386 | (2) |
|
10.2 General Overview of the Method |
|
|
388 | (1) |
|
10.3 Requirements Specification |
|
|
389 | (13) |
|
10.3.1 Analysis-Driven Requirements Specification |
|
|
389 | (3) |
|
10.3.2 Analysis-Driven Requirements for the Northwind Case Study |
|
|
392 | (4) |
|
10.3.3 Source-Driven Requirements Specification |
|
|
396 | (2) |
|
10.3.4 Source-Driven Requirements for the Northwind Case Study |
|
|
398 | (3) |
|
10.3.5 Analysis/Source-Driven Requirements Specification |
|
|
401 | (1) |
|
|
402 | (8) |
|
10.4.1 Analysis-Driven Conceptual Design |
|
|
402 | (2) |
|
10.4.2 Analysis-Driven Conceptual Design for the Northwind Case Study |
|
|
404 | (3) |
|
10.4.3 Source-Driven Conceptual Design |
|
|
407 | (1) |
|
10.4.4 Source-Driven Conceptual Design for the Northwind Case Study |
|
|
408 | (1) |
|
10.4.5 Analysis/Source-Driven Conceptual Design |
|
|
409 | (1) |
|
|
410 | (3) |
|
|
411 | (2) |
|
|
413 | (1) |
|
|
413 | (2) |
|
10.7 Characterization of the Various Approaches |
|
|
415 | (3) |
|
10.7.1 Analysis-Driven Approach |
|
|
415 | (1) |
|
10.7.2 Source-Driven Approach |
|
|
416 | (1) |
|
10.7.3 Analysis/Source-Driven Approach |
|
|
417 | (1) |
|
|
418 | (1) |
|
|
418 | (1) |
|
|
419 | (1) |
|
|
420 | (7) |
|
|
|
11 Spatial Data Warehouses |
|
|
427 | (48) |
|
11.1 General Concepts of Spatial Databases |
|
|
428 | (6) |
|
11.1.1 Spatial Data Types |
|
|
428 | (4) |
|
|
432 | (2) |
|
11.2 Conceptual Modeling of Spatial Data Warehouses |
|
|
434 | (8) |
|
11.2.1 Spatial Hierarchies |
|
|
438 | (2) |
|
11.2.2 Spatiality and Measures |
|
|
440 | (2) |
|
11.3 Implementation Considerations for Spatial Data |
|
|
442 | (6) |
|
11.3.1 Spatial Reference Systems |
|
|
442 | (1) |
|
|
443 | (3) |
|
|
446 | (2) |
|
11.4 Relational Representation of Spatial Data Warehouses |
|
|
448 | (6) |
|
11.4.1 Spatial Levels and Attributes |
|
|
448 | (2) |
|
11.4.2 Spatial Facts, Measures, and Hierarchies |
|
|
450 | (2) |
|
11.4.3 Topological Constraints |
|
|
452 | (2) |
|
|
454 | (1) |
|
11.6 Querying the GeoNorthwind Cube in MDX |
|
|
455 | (4) |
|
11.7 Querying the GeoNorthwind Data Warehouse in SQL |
|
|
459 | (2) |
|
11.8 Spatial Data Warehouse Design |
|
|
461 | (6) |
|
11.8.1 Requirements Specification and Conceptual Design |
|
|
462 | (5) |
|
11.8.2 Logical and Physical Design |
|
|
467 | (1) |
|
|
467 | (1) |
|
11.10 Bibliographic Notes |
|
|
468 | (1) |
|
|
468 | (1) |
|
|
469 | (6) |
|
12 Trajectory Data Warehouses |
|
|
475 | (32) |
|
12.1 Mobility Data Analysis |
|
|
476 | (1) |
|
|
477 | (8) |
|
12.2.1 Temporal Spatial Types |
|
|
481 | (2) |
|
12.2.2 Temporal Field Types |
|
|
483 | (2) |
|
12.3 Implementation of Temporal Types in PostGIS |
|
|
485 | (5) |
|
12.4 The Northwind Trajectory Data Warehouse |
|
|
490 | (5) |
|
12.5 Querying the Northwind Trajectory Data Warehouse in SQL |
|
|
495 | (7) |
|
|
502 | (1) |
|
|
502 | (1) |
|
|
503 | (1) |
|
|
504 | (3) |
|
13 New Data Warehouse Technologies |
|
|
507 | (32) |
|
13.1 MapReduce and Hadoop |
|
|
508 | (2) |
|
13.2 High-Level Languages for Hadoop |
|
|
510 | (4) |
|
|
510 | (2) |
|
|
512 | (2) |
|
13.3 Column-Store Database Systems |
|
|
514 | (2) |
|
13.4 In-Memory Database Systems |
|
|
516 | (3) |
|
13.5 Representative Systems |
|
|
519 | (9) |
|
|
519 | (1) |
|
|
520 | (1) |
|
|
521 | (1) |
|
|
522 | (2) |
|
|
524 | (2) |
|
13.5.6 SQL Server xVelocity |
|
|
526 | (2) |
|
13.6 Real-Time Data Warehouses |
|
|
528 | (4) |
|
13.7 Extraction, Loading, and Transformation |
|
|
532 | (2) |
|
|
534 | (1) |
|
|
535 | (1) |
|
|
535 | (1) |
|
|
536 | (3) |
|
14 Data Warehouses and the Semantic Web |
|
|
539 | (38) |
|
|
540 | (7) |
|
14.1.1 Introduction to RDF and RDFS |
|
|
540 | (1) |
|
14.1.2 RDF Serializations |
|
|
541 | (2) |
|
14.1.3 RDF Representation of Relational Data |
|
|
543 | (4) |
|
|
547 | (4) |
|
14.3 RDF Representation of Multidimensional Data |
|
|
551 | (10) |
|
14.3.1 RDF Data Cube Vocabulary |
|
|
553 | (4) |
|
14.3.2 QB4OLAP Vocabulary |
|
|
557 | (4) |
|
14.4 Representation of the Northwind Cube in QB4OLAP |
|
|
561 | (3) |
|
14.5 Querying the Northwind Cube in SPARQL |
|
|
564 | (9) |
|
|
573 | (1) |
|
|
574 | (1) |
|
|
575 | (1) |
|
|
575 | (2) |
|
|
577 | (12) |
|
15.1 Temporal Data Warehouses |
|
|
577 | (2) |
|
15.2 3D/4D Spatial Data Warehouses |
|
|
579 | (2) |
|
15.3 Text Analytics and Text Data Warehouses |
|
|
581 | (2) |
|
15.4 Multimedia Data Warehouses |
|
|
583 | (3) |
|
15.5 Graph Analytics and Graph Data Warehouses |
|
|
586 | (3) |
|
|
589 | (12) |
|
A.1 Entity-Relationship Model |
|
|
589 | (2) |
|
|
591 | (1) |
|
A.3 MultiDim Model for Data Warehouses |
|
|
591 | (4) |
|
A.4 MultiDim Model for Spatial Data Warehouses |
|
|
595 | (2) |
|
A.5 BPMN Notation for ETL |
|
|
597 | (4) |
References |
|
601 | (14) |
Index |
|
615 | |