Introduction |
|
xv | |
Dimensional Modeling |
|
xviii | |
Why Model? |
|
xviii | |
Snatching Defeat from the Jaws of Victory |
|
xxi | |
The Goals of a Data Warehouse |
|
xxiii | |
The Goals of This Book |
|
xxv | |
|
|
1 | (20) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
3 | (2) |
|
|
5 | (2) |
|
|
7 | (1) |
|
The Entity Relation Data Model |
|
|
8 | (2) |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (1) |
|
The Standard Template Query |
|
|
14 | (3) |
|
Attributes Are the Drivers of the Data Warehouse |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (2) |
|
|
21 | (28) |
|
Steps in the Design Process |
|
|
22 | (1) |
|
Grocery Store Item Movement |
|
|
22 | (3) |
|
Identifying the Processes to Model |
|
|
25 | (2) |
|
Picking the Business Measurements for the Fact Table |
|
|
27 | (2) |
|
|
29 | (1) |
|
|
30 | (2) |
|
|
32 | (3) |
|
|
35 | (4) |
|
|
39 | (2) |
|
|
41 | (3) |
|
|
44 | (2) |
|
Database Sizing for the Grocery Chain |
|
|
46 | (3) |
|
|
49 | (16) |
|
Inventory Levels: Another Semiadditive Fact |
|
|
49 | (1) |
|
|
50 | (1) |
|
The Inventory Snapshot Model |
|
|
51 | (2) |
|
Gross Margin Return on Inventory (GMROI) |
|
|
53 | (1) |
|
The Delivery Status Model |
|
|
54 | (5) |
|
|
59 | (3) |
|
Database Sizing for Inventory Snapshot |
|
|
62 | (1) |
|
Database Sizing for Inventory Delivery Status |
|
|
62 | (1) |
|
Database Sizing for Inventory Transaction |
|
|
62 | (3) |
|
Shipments: The Most Powerful Database |
|
|
65 | (16) |
|
The Most Powerful Database |
|
|
66 | (2) |
|
|
68 | (2) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (4) |
|
|
77 | (1) |
|
The Invoice Number: A Degenerate Dimension |
|
|
78 | (1) |
|
Database Sizing for Shipments |
|
|
79 | (2) |
|
|
81 | (8) |
|
|
81 | (4) |
|
Subdivisions Within the Value Chain |
|
|
85 | (1) |
|
|
86 | (3) |
|
|
89 | (18) |
|
|
89 | (3) |
|
The Merchandise Hierarchy |
|
|
92 | (1) |
|
The True Meaning of Drill Down |
|
|
93 | (1) |
|
|
94 | (1) |
|
Resisting the Urge to Snowflake |
|
|
95 | (1) |
|
The Threat to Browsing Performance |
|
|
95 | (2) |
|
Really Big Customer Dimensions |
|
|
97 | (1) |
|
Demographic Minidimensions |
|
|
98 | (2) |
|
Slowly Changing Dimensions |
|
|
100 | (5) |
|
Slowly Changing Minidimensions |
|
|
105 | (2) |
|
Financial Services, Especially Banks |
|
|
107 | (10) |
|
|
109 | (2) |
|
Semiadditive Account Balances |
|
|
111 | (1) |
|
|
112 | (3) |
|
Interaction with Transaction Grain Fact Tables |
|
|
115 | (1) |
|
Using Big-Dimension Techniques |
|
|
116 | (1) |
|
Database Sizing for Household Banking |
|
|
116 | (1) |
|
|
117 | (8) |
|
Subscription Transactions |
|
|
117 | (3) |
|
|
120 | (3) |
|
Database Sizing for Cable TV Sales Transactions |
|
|
123 | (1) |
|
Database Sizing for Cable TV Sales Monthly Summary |
|
|
124 | (1) |
|
|
125 | (18) |
|
|
126 | (3) |
|
|
129 | (4) |
|
Monthly Snapshots for Policies and Claims |
|
|
133 | (1) |
|
Transaction Schemas with Heterogeneous Products |
|
|
134 | (3) |
|
Snapshot Schemas with Heterogeneous Products |
|
|
137 | (1) |
|
Minidimensions in Insured Party and Covered Item |
|
|
138 | (2) |
|
|
140 | (1) |
|
Database Sizing for Insurance Policy Transactions |
|
|
140 | (1) |
|
Database Sizing for Claim Transactions |
|
|
141 | (1) |
|
Database Sizing for Core Policy Snapshot |
|
|
141 | (1) |
|
Database Sizing for Claims Snapshot |
|
|
141 | (2) |
|
|
143 | (10) |
|
|
143 | (2) |
|
|
145 | (2) |
|
|
147 | (2) |
|
Database Sizing for College Course Factless Fact Table |
|
|
149 | (1) |
|
Database Sizing for Hospital Patient Procedure Factless Fact Table |
|
|
150 | (1) |
|
Database Sizing for Accident Parties Factless Fact Table |
|
|
150 | (1) |
|
Database Sizing for Promotion Coverage Factless Fact Table |
|
|
150 | (1) |
|
Database Sizing for Big Product Sales Factless Fact Table |
|
|
151 | (2) |
|
|
153 | (8) |
|
The Frequent Flyer Data Warehouse |
|
|
153 | (2) |
|
|
155 | (2) |
|
Travel Credit Card Data Warehouse |
|
|
157 | (1) |
|
Database Sizing for Airline Frequent Flyer Fact Table |
|
|
158 | (1) |
|
Database Sizing for Shipper Fact Table |
|
|
159 | (1) |
|
Database Sizing for Hotel Stays Fact Table |
|
|
159 | (1) |
|
Database Sizing for Car Rentals Fact Table |
|
|
160 | (1) |
|
Building a Dimensional Data Warehouse |
|
|
161 | (26) |
|
|
162 | (4) |
|
Interviewing the End Users |
|
|
166 | (2) |
|
The Content of the End User Interviews |
|
|
168 | (9) |
|
|
177 | (2) |
|
The Nine Decisions Revisited |
|
|
179 | (1) |
|
|
180 | (1) |
|
Filling in the Details of the Tables |
|
|
181 | (1) |
|
The Top-Level Physical Design |
|
|
181 | (1) |
|
How to Choose Hardware and Software |
|
|
182 | (5) |
|
|
187 | (24) |
|
|
187 | (3) |
|
|
190 | (1) |
|
|
191 | (8) |
|
Sparsity Failure and the Explosion of Aggregates |
|
|
199 | (3) |
|
|
202 | (1) |
|
|
203 | (1) |
|
|
204 | (1) |
|
|
205 | (2) |
|
Incremental Rollout of Aggregations |
|
|
207 | (1) |
|
The Aggregate Navigation Strategy |
|
|
208 | (1) |
|
Aggregations Provide a Home for Planning Data |
|
|
209 | (2) |
|
|
211 | (20) |
|
The Daily Rhythms: Querying and Loading |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
215 | (1) |
|
The Production Data Extract System |
|
|
216 | (10) |
|
|
226 | (2) |
|
|
228 | (3) |
|
|
231 | (12) |
|
|
231 | (3) |
|
Query Loads in Dimensional Data Warehouse Environments |
|
|
234 | (1) |
|
Completing the Application |
|
|
235 | (7) |
|
|
242 | (1) |
|
Keeping the Network Running Fast |
|
|
242 | (1) |
|
|
243 | (36) |
|
The Internal Architecture of a Query Tool |
|
|
243 | (1) |
|
Stitching Together Multiple Answer Sets |
|
|
244 | (8) |
|
|
252 | (1) |
|
User Interface Recommendations |
|
|
253 | (4) |
|
|
257 | (17) |
|
Administrative Responsibilities |
|
|
274 | (5) |
|
|
279 | (10) |
|
|
279 | (1) |
|
Optimizing the Execution Strategy for Star Join Queries |
|
|
280 | (2) |
|
Indexing of Dimension Tables |
|
|
282 | (1) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (1) |
|
Syntax Extensions for SQL |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
287 | (2) |
Appendix A. Design Principles for a Dimensional Data Warehouse |
|
289 | (12) |
Appendix B. A System Checklist for a Perfect Dimensional Data Warehouse |
|
301 | (6) |
Appendix C. A Glossary for a Dimensional Data Warehouse |
|
307 | (14) |
Appendix D. User's Guide for Star Tracker™ |
|
321 | (46) |
|
|
321 | (1) |
|
|
322 | (1) |
|
|
323 | (3) |
|
|
326 | (19) |
|
Browsing and Defining Groups |
|
|
345 | (10) |
|
|
355 | (10) |
|
|
365 | (2) |
Index |
|
367 | |