Muutke küpsiste eelistusi

Decision Making Under Uncertainty and Reinforcement Learning: Theory and Algorithms 2022 ed. [Kõva köide]

  • Formaat: Hardback, 243 pages, kõrgus x laius: 235x155 mm, kaal: 559 g, 62 Illustrations, color; 5 Illustrations, black and white; XIII, 243 p. 67 illus., 62 illus. in color., 1 Hardback
  • Sari: Intelligent Systems Reference Library 223
  • Ilmumisaeg: 03-Dec-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031076125
  • ISBN-13: 9783031076121
Teised raamatud teemal:
  • Kõva köide
  • Hind: 150,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 177,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 243 pages, kõrgus x laius: 235x155 mm, kaal: 559 g, 62 Illustrations, color; 5 Illustrations, black and white; XIII, 243 p. 67 illus., 62 illus. in color., 1 Hardback
  • Sari: Intelligent Systems Reference Library 223
  • Ilmumisaeg: 03-Dec-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031076125
  • ISBN-13: 9783031076121
Teised raamatud teemal:

This book presents recent research in decision making under uncertainty, in particular reinforcement learning and learning with expert advice. The core elements of decision theory, Markov decision processes and reinforcement learning have not been previously collected in a concise volume. Our aim with this book was to provide a solid theoretical foundation with elementary proofs of the most important theorems in the field, all collected in one place, and not typically found in
introductory textbooks.  This book is addressed to graduate students that are interested in statistical decision making under uncertainty and the foundations of reinforcement learning.  


Introduction.- Subjective probability and utility.- Decision
problems.- Estimation.