Muutke küpsiste eelistusi

Deep Learning Classifiers with Memristive Networks: Theory and Applications 2020 ed. [Kõva köide]

  • Formaat: Hardback, 213 pages, kõrgus x laius: 235x155 mm, kaal: 512 g, 102 Illustrations, color; 22 Illustrations, black and white; XIII, 213 p. 124 illus., 102 illus. in color., 1 Hardback
  • Sari: Modeling and Optimization in Science and Technologies 14
  • Ilmumisaeg: 17-Apr-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030145220
  • ISBN-13: 9783030145224
Teised raamatud teemal:
  • Kõva köide
  • Hind: 159,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 188,09 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 213 pages, kõrgus x laius: 235x155 mm, kaal: 512 g, 102 Illustrations, color; 22 Illustrations, black and white; XIII, 213 p. 124 illus., 102 illus. in color., 1 Hardback
  • Sari: Modeling and Optimization in Science and Technologies 14
  • Ilmumisaeg: 17-Apr-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030145220
  • ISBN-13: 9783030145224
Teised raamatud teemal:

This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.

Available in MS