Preface |
|
xv | |
Acknowledgments |
|
xvii | |
Author |
|
xix | |
Chapter 1 Introduction |
|
1 | (4) |
|
|
1 | (1) |
|
1.2 What Is Machine Learning? |
|
|
1 | (1) |
|
1.3 What Is Deep Learning? |
|
|
2 | (1) |
|
|
2 | (3) |
|
|
2 | (1) |
|
|
3 | (1) |
|
1.4.3 TensorFlow and Keras Fundamentals |
|
|
3 | (1) |
|
1.4.4 Artificial Neural Networks (ANNs) Fundamentals and Architectures |
|
|
3 | (1) |
|
1.4.5 Deep Neural Networks (DNNs) Fundamentals and Architectures |
|
|
3 | (1) |
|
1.4.6 Deep Neural Networks for Images and Audio Data Analysis |
|
|
3 | (1) |
|
1.4.7 Deep Neural Networks for Virtual Assistant Robots |
|
|
3 | (1) |
|
1.4.8 Finding the Best Model? |
|
|
4 | (1) |
Chapter 2 Python/NumPy Fundamentals |
|
5 | (24) |
|
|
5 | (13) |
|
|
5 | (1) |
|
|
6 | (1) |
|
2.1.3 Operators and Operands |
|
|
6 | (1) |
|
2.1.4 Statements and Expressions |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (2) |
|
|
13 | (2) |
|
|
15 | (2) |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
18 | (11) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
21 | (1) |
|
2.2.7 Shape and Reshape Array |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
2.2.15 Array Vectorization |
|
|
26 | (1) |
|
2.2.16 np.zeros and np.ones |
|
|
27 | (1) |
|
|
27 | (1) |
|
2.2.18 Generate Random Numbers |
|
|
27 | (1) |
|
2.2.19 Mathematical Functions |
|
|
28 | (1) |
|
2.2.20 Dot Product and Matrix Multiplication |
|
|
28 | (1) |
|
|
28 | (1) |
Chapter 3 TensorFlow and Keras Fundamentals |
|
29 | (22) |
|
3.1 How Does Tensorflow Work? |
|
|
29 | (2) |
|
|
31 | (3) |
|
|
34 | (1) |
|
3.4 Building An NN Using Tensorflow |
|
|
35 | (4) |
|
|
35 | (1) |
|
3.4.2 Load and Normalize the Data |
|
|
36 | (1) |
|
|
36 | (1) |
|
3.4.4 Train and Evaluate the Model |
|
|
37 | (2) |
|
3.5 Building A CNN Using Tensorflow |
|
|
39 | (3) |
|
|
39 | (1) |
|
|
39 | (1) |
|
3.5.3 Convolutional and Pooling Layers |
|
|
40 | (1) |
|
|
40 | (1) |
|
3.5.5 Train and Evaluate the Model |
|
|
41 | (1) |
|
|
41 | (1) |
|
3.6 Setup And Install Keras |
|
|
42 | (4) |
|
3.6.1 Create a Virtual Environment |
|
|
42 | (1) |
|
3.6.2 Activate the Environment |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
3.6.5 Import Libraries and Modules |
|
|
44 | (1) |
|
3.6.6 Train and Predict the Model |
|
|
45 | (1) |
|
3.7 Implement An Example Using Keras |
|
|
46 | (5) |
|
|
47 | (4) |
Chapter 4 Artificial Neural Networks (ANNs) Fundamentals and Architectures |
|
51 | (26) |
|
|
51 | (5) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
4.1.5 Activation Function |
|
|
52 | (1) |
|
|
52 | (1) |
|
4.1.7 Training, Testing, and Validation Sets |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
54 | (1) |
|
4.1.12 Balanced and Unbalanced Datasets |
|
|
55 | (1) |
|
|
55 | (1) |
|
4.2 Artificial Neural Networks (ANNs) |
|
|
56 | (2) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
58 | (3) |
|
|
58 | (1) |
|
4.3.2 Tanh or Hyperbolic Tangent (tan) |
|
|
59 | (1) |
|
4.3.3 Rectified Linear Unit (ReLU) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
4.5 Optimization Functions |
|
|
62 | (3) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
4.5.4 Stochastic Gradient Descent |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
4.6 Linear And Nonlinear Functions |
|
|
65 | (3) |
|
|
65 | (2) |
|
4.6.2 Nonlinear Functions |
|
|
67 | (1) |
|
|
68 | (9) |
|
4.7.1 Feed Forward Neural Networks (FFNNs) |
|
|
68 | (4) |
|
4.7.1.1 FFN Example in TensorFlow |
|
|
70 | (2) |
|
|
72 | (1) |
|
4.7.3 Single-Layer Perceptron |
|
|
72 | (1) |
|
4.7.4 Multi-Layer Perceptron (MLP) |
|
|
73 | (4) |
|
4.7.4.1 MLP Example in TensorFlow |
|
|
73 | (4) |
Chapter 5 Deep Neural Networks (DNNs) Fundamentals and Architectures |
|
77 | (32) |
|
|
77 | (3) |
|
5.1.1 What Is Deep Learning? |
|
|
77 | (1) |
|
5.1.2 Deep Learning Needs! |
|
|
78 | (1) |
|
5.1.3 How to Deploy DL More Efficiently? |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
80 | (1) |
|
5.1.13 End-to-End Learning |
|
|
80 | (1) |
|
5.2 Deep Learning Applications |
|
|
80 | (2) |
|
5.3 Deep Learning Algorithms And Architectures |
|
|
82 | (5) |
|
5.3.1 Convolutional Neural Networks (CNNs) |
|
|
84 | (1) |
|
5.3.2 Recurrent Neural Networks (RNNs) |
|
|
84 | (1) |
|
5.3.3 Long Short-Term Memory (LSTM) |
|
|
85 | (1) |
|
5.3.4 Generative Adversarial Network (GAN) |
|
|
85 | (1) |
|
5.3.5 Residual Neural Network Learning (ResNets) |
|
|
86 | (1) |
|
5.4 Convolutional Neural Networks (CNNs) |
|
|
87 | (6) |
|
|
87 | (3) |
|
5.4.1.1 Convolution Layers |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
88 | (1) |
|
5.4.1.4 Batch Normalization |
|
|
89 | (1) |
|
5.4.1.5 Fully Connected Layer |
|
|
90 | (1) |
|
|
90 | (3) |
|
5.5 Recurrent Neural Networks (RNNs) |
|
|
93 | (3) |
|
5.5.1 Recurrent Neural Network Architecture |
|
|
93 | (1) |
|
5.5.2 Long Short-Term Memory (LSTM) |
|
|
93 | (1) |
|
|
94 | (2) |
|
|
94 | (1) |
|
5.5.3.2 Load and Normalize the Dataset |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
5.5.3.5 Evaluate the Model |
|
|
95 | (1) |
|
5.6 Generative Adversarial Networks (GANs) |
|
|
96 | (13) |
|
|
96 | (2) |
|
5.6.2 A GAN for Fashion Dataset |
|
|
98 | (12) |
|
|
98 | (1) |
|
5.6.2.2 Data Preprocessing |
|
|
99 | (1) |
|
5.6.2.3 Defining the Discriminator Model |
|
|
100 | (2) |
|
5.6.2.4 Defining the Generator Model |
|
|
102 | (1) |
|
5.6.2.5 Combining the Generator and Discriminator Model |
|
|
103 | (2) |
|
5.6.2.6 Create Train Function and Train the Model |
|
|
105 | (2) |
|
5.6.2.7 Predict (Generate Data) |
|
|
107 | (2) |
Chapter 6 Deep Neural Networks (DNNs) for Images Analysis |
|
109 | (44) |
|
6.1 Deep Learning And Image Analysis |
|
|
109 | (1) |
|
6.2 Convolutional Neural Networks (CNNs) And Image Analysis |
|
|
110 | (15) |
|
|
113 | (2) |
|
6.2.1.1 Number and Type of Filters |
|
|
113 | (1) |
|
|
114 | (1) |
|
6.2.1.3 Stride and Padding Size |
|
|
114 | (1) |
|
6.2.2 Number of Parameters |
|
|
115 | (3) |
|
|
115 | (1) |
|
6.2.2.2 Convolutional Layer |
|
|
115 | (1) |
|
|
116 | (1) |
|
6.2.2.4 Fully Connected Layer (FC) |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
118 | (7) |
|
|
118 | (1) |
|
|
119 | (1) |
|
6.2.4.3 GoogleNet/Inception-v1 (2014) |
|
|
120 | (1) |
|
|
121 | (1) |
|
6.2.4.5 Inception-v3 (2015) |
|
|
121 | (1) |
|
|
122 | (2) |
|
6.2.4.7 Inception-v4 (2016) |
|
|
124 | (1) |
|
6.3 General Strategy To Implement Model Using CNNs |
|
|
125 | (1) |
|
|
125 | (1) |
|
6.3.2 Load the Data and Create the Data Categories |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
126 | (1) |
|
|
126 | (1) |
|
6.4 Object Recognition Using CNNs |
|
|
126 | (4) |
|
|
127 | (1) |
|
6.4.2 Load the Data and Generate a Dataset |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
129 | (1) |
|
6.5 Image Classification Using CNNs |
|
|
130 | (3) |
|
|
130 | (1) |
|
|
130 | (1) |
|
|
131 | (2) |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
133 | (13) |
|
|
133 | (1) |
|
6.6.2 Load the Data and Generate a Dataset |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (9) |
|
|
144 | (1) |
|
|
144 | (2) |
|
6.7 Object Recognition Using CNNs |
|
|
146 | (7) |
|
|
146 | (1) |
|
6.7.2 Load the Data and Generate a Dataset |
|
|
147 | (1) |
|
|
147 | (3) |
|
6.7.3.1 The Generator Function |
|
|
147 | (1) |
|
6.3.7.2 The Discriminator Function |
|
|
148 | (2) |
|
|
150 | (1) |
|
|
151 | (2) |
Chapter 7 Deep Neural Networks (DNNs) for Virtual Assistant Robot |
|
153 | (22) |
|
7.1 Virtual Assistant Robot |
|
|
153 | (1) |
|
7.2 Facial Detection And Recognition |
|
|
154 | (8) |
|
|
154 | (1) |
|
|
155 | (3) |
|
|
155 | (1) |
|
|
156 | (1) |
|
7.2.2.3 Define CNN Model and Training |
|
|
156 | (1) |
|
|
157 | (1) |
|
7.2.2.5 Evaluate Performance |
|
|
158 | (1) |
|
|
158 | (2) |
|
|
158 | (2) |
|
|
160 | (1) |
|
7.2.3.3 Test the Trained Model |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
7.3 Emotion Recognition Using Speech |
|
|
162 | (7) |
|
|
162 | (2) |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
165 | (1) |
|
7.3.3.1 Data Augmentation |
|
|
165 | (1) |
|
|
166 | (2) |
|
|
168 | (1) |
|
7.3.6 Test the Trained Model |
|
|
169 | (1) |
|
|
169 | (2) |
|
|
170 | (1) |
|
7.4.2 Deep Neural Networks Modeling |
|
|
170 | (1) |
|
|
170 | (1) |
|
7.4.4 Predictions Calculation |
|
|
171 | (1) |
|
|
171 | (4) |
|
|
172 | (1) |
|
7.5.2 Create a DAN Network |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
173 | (2) |
Chapter 8 Finding the Best Model |
|
175 | (14) |
|
|
175 | (1) |
|
8.2 What Is A Good Model? |
|
|
176 | (1) |
|
|
177 | (3) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (2) |
|
8.4.1 Incorrect Classifier |
|
|
181 | (1) |
|
|
181 | (1) |
|
8.5 What Is The Variance? |
|
|
182 | (2) |
|
|
183 | (1) |
|
|
184 | (1) |
|
8.7 How Can We Find The Problems In A Model? |
|
|
185 | (4) |
|
|
186 | (1) |
|
|
187 | (2) |
Biography |
|
189 | (6) |
Index |
|
195 | |