Nomenclature |
|
xi | |
Greek Symbols |
|
xiii | |
Authors' Biographies |
|
xv | |
Preface |
|
xvii | |
|
|
1 | (18) |
|
1.1 Fundamental Principles |
|
|
1 | (1) |
|
1.2 Turbomachinery Classification |
|
|
1 | (2) |
|
1.3 Dimensions and Units Used in Turbomachinery |
|
|
3 | (2) |
|
1.3.1 Primary/Base Dimensions and Units |
|
|
4 | (1) |
|
1.3.2 Derived Dimensions and Units |
|
|
4 | (1) |
|
1.4 Commonly Used Quantities in Turbomachines |
|
|
5 | (8) |
|
|
5 | (1) |
|
|
6 | (2) |
|
|
8 | (1) |
|
1.4.3.1 Head of a Pump Between Two Reservoirs |
|
|
8 | (2) |
|
|
10 | (1) |
|
|
11 | (2) |
|
|
13 | (3) |
|
|
16 | (1) |
|
|
17 | (2) |
|
Chapter 2 Scaling Laws and Dimension Analysis |
|
|
19 | (16) |
|
|
19 | (1) |
|
|
19 | (2) |
|
2.3 Rayleigh's Method of Dimensional Analysis |
|
|
21 | (2) |
|
2.4 Buckingham Pi Theorem |
|
|
23 | (3) |
|
2.4.1 Procedure for Buckingham Pi Method |
|
|
24 | (2) |
|
2.5 Principles of Similarity |
|
|
26 | (3) |
|
|
27 | (2) |
|
|
29 | (4) |
|
|
33 | (1) |
|
|
34 | (1) |
|
Chapter 3 Centrifugal and Mixed-Flow Pumps |
|
|
35 | (42) |
|
|
35 | (1) |
|
3.2 Coordinate Systems Used in Turbomachinery Flows |
|
|
35 | (1) |
|
3.3 Energy Transfer in Turbomachines |
|
|
35 | (4) |
|
|
39 | (1) |
|
3.5 Velocity Components for Different Impeller Blade Orientation |
|
|
40 | (1) |
|
3.6 Procedure for Drawing Velocity Triangles |
|
|
41 | (1) |
|
|
42 | (1) |
|
3.8 Working Equation of a Pump with Infinitely Thin and Infinite Number of Blades |
|
|
42 | (16) |
|
3.8.1 Slip Factor Correlations |
|
|
45 | (1) |
|
3.8.1.1 Stodola's Correlation |
|
|
45 | (1) |
|
3.8.1.2 Stodola-Serstjuk Correlation |
|
|
46 | (1) |
|
|
46 | (1) |
|
3.8.1.4 Busemann's Correlation |
|
|
46 | (1) |
|
3.8.1.5 Waisser's Correlation |
|
|
47 | (1) |
|
3.8.2 Fundamental Design Parameters for Hydrodynamic Pumps |
|
|
47 | (1) |
|
3.8.3 Design of Radial Impellers |
|
|
48 | (6) |
|
|
54 | (4) |
|
|
58 | (2) |
|
|
58 | (1) |
|
|
58 | (1) |
|
3.9.3 Hydraulic Design of Impeller |
|
|
59 | (1) |
|
|
60 | (12) |
|
|
72 | (2) |
|
|
74 | (3) |
|
Chapter 4 Axial Flow Pumps |
|
|
77 | (30) |
|
|
77 | (1) |
|
4.2 Theoretical and Actual Head |
|
|
77 | (2) |
|
|
78 | (1) |
|
4.3 Flow Over Isolated Airfoils |
|
|
79 | (4) |
|
4.3.1 Aerodynamics Characteristics of an Airfoil Profile |
|
|
80 | (3) |
|
4.4 Pressure Rise on an Airfoil |
|
|
83 | (1) |
|
4.5 Relationship Between Circulation and Lift Force |
|
|
84 | (5) |
|
4.6 Preliminary Design of Impeller of an Axial Flow Machine |
|
|
89 | (2) |
|
4.6.1 Efficiency and Power |
|
|
89 | (2) |
|
4.7 Meridional Section of an Axial Flow Machine |
|
|
91 | (1) |
|
|
92 | (1) |
|
4.9 Axial Thrust in Axial Pumps |
|
|
93 | (1) |
|
4.10 Performance Characteristics of Axial Flow Pumps |
|
|
94 | (2) |
|
4.11 Flow Rate Control in Axial Pumps |
|
|
96 | (1) |
|
|
96 | (7) |
|
|
103 | (1) |
|
|
104 | (3) |
|
|
107 | (38) |
|
|
107 | (1) |
|
|
107 | (5) |
|
5.2.1 Water/Hydrologic Cycle |
|
|
107 | (3) |
|
5.2.2 Classification of Hydropower Plants |
|
|
110 | (1) |
|
5.2.2.1 Impoundment Hydropower Plants |
|
|
110 | (1) |
|
5.2.2.2 Diversion Hydropower Plants |
|
|
110 | (1) |
|
5.2.2.3 Pumped Storage Hydropower Plants |
|
|
111 | (1) |
|
|
112 | (16) |
|
5.3.1 Brief History of Hydro-Turbines |
|
|
112 | (1) |
|
5.3.2 Classification of Hydro-Turbines |
|
|
112 | (1) |
|
5.3.3 Impulse Hydro-Turbines |
|
|
113 | (1) |
|
|
113 | (1) |
|
|
114 | (1) |
|
5.3.3.3 Crossflow (Banki) Turbines |
|
|
114 | (1) |
|
5.3.4 Reaction Hydro-Turbines |
|
|
114 | (2) |
|
|
116 | (1) |
|
|
116 | (1) |
|
5.3.4.3 Propeller Turbines |
|
|
116 | (1) |
|
|
117 | (1) |
|
5.3.5 Euler Turbine Equations |
|
|
118 | (2) |
|
|
120 | (1) |
|
|
121 | (1) |
|
5.3.6.2 Model and Prototypes |
|
|
122 | (3) |
|
|
125 | (1) |
|
|
125 | (1) |
|
5.3.6.5 Other Forms of Specific Speed |
|
|
126 | (1) |
|
5.3.7 Turbine Efficiencies |
|
|
127 | (1) |
|
5.3.7.1 Hydraulic Efficiency |
|
|
127 | (1) |
|
5.3.7.2 Volumetric Efficiency |
|
|
127 | (1) |
|
5.3.7.3 Mechanical Efficiency |
|
|
128 | (1) |
|
5.3.7.4 Overall Efficiency |
|
|
128 | (1) |
|
|
128 | (4) |
|
|
128 | (3) |
|
5.4.2 Procedure for Determining the Main Dimensions of Pelton Turbines |
|
|
131 | (1) |
|
5.4.3 Turbine Rotational Speed |
|
|
131 | (1) |
|
5.4.4 Determination of Runner Diameter and Nozzle Diameter |
|
|
131 | (1) |
|
|
132 | (2) |
|
|
133 | (1) |
|
5.5.1.1 Procedure for Determining the Main Dimensions of Francis Turbines |
|
|
133 | (1) |
|
|
134 | (1) |
|
5.6.1 Procedure for Determining the Main Dimensions of Kaplan Turbines |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (6) |
|
|
141 | (2) |
|
|
143 | (2) |
|
Chapter 6 Small Hydropower Plants |
|
|
145 | (18) |
|
|
145 | (1) |
|
6.2 Key Features of Small Hydropower Plants |
|
|
145 | (3) |
|
|
148 | (2) |
|
6.4 Design of Intake and Penstocks |
|
|
150 | (5) |
|
|
150 | (2) |
|
|
152 | (1) |
|
6.4.2.1 Head Loss Calculation |
|
|
153 | (2) |
|
6.5 Turbine Selection (Number and Type) |
|
|
155 | (1) |
|
6.6 Hydraulic Transients and Dynamic Effects |
|
|
156 | (1) |
|
6.6.1 Preliminary Analysis |
|
|
156 | (1) |
|
6.7 Electrical Equipment Considerations |
|
|
157 | (2) |
|
|
159 | (1) |
|
|
160 | (3) |
|
|
163 | (22) |
|
7.1 Introduction: Main Features of Cavitating Flow |
|
|
163 | (2) |
|
7.2 Cavitation in Hydraulic Machines |
|
|
165 | (8) |
|
7.2.1 Cavitation in Pumps |
|
|
165 | (4) |
|
7.2.2 Cavitation in Turbines |
|
|
169 | (1) |
|
7.2.2.1 Suction Head of Water Turbines |
|
|
170 | (1) |
|
|
171 | (2) |
|
7.3 Methods of Improving Cavitation Performance of Pumps |
|
|
173 | (1) |
|
|
174 | (7) |
|
|
181 | (3) |
|
|
184 | (1) |
|
Chapter 8 Testing Hydraulic Machines |
|
|
185 | (10) |
|
|
185 | (1) |
|
|
185 | (1) |
|
8.3 Instruments and Measurements |
|
|
186 | (4) |
|
8.3.1 Pressure Measurements |
|
|
186 | (1) |
|
8.3.2 Flow Rate Measurements |
|
|
186 | (1) |
|
|
187 | (1) |
|
8.3.4 Shaft Power Measurements |
|
|
187 | (1) |
|
8.3.5 Pump Performance Characteristics Determination |
|
|
187 | (1) |
|
|
188 | (1) |
|
8.3.6.1 NPSH Test Process |
|
|
189 | (1) |
|
|
190 | (4) |
|
|
194 | (1) |
|
|
194 | (1) |
|
Chapter 9 CFD Analysis in Turbomachinery |
|
|
195 | (50) |
|
|
195 | (1) |
|
|
196 | (2) |
|
9.2.1 Mathematical-Physical Model of Flow in a Hydrodynamic Machine |
|
|
196 | (2) |
|
9.3 Turbulence Modeling Methods |
|
|
198 | (1) |
|
|
199 | (15) |
|
9.4.1 RANS Turbulence Models |
|
|
199 | (1) |
|
9.4.1.1 Eddy Viscosity Models |
|
|
199 | (2) |
|
9.4.1.2 Algebraic (Zero-Equation) Models |
|
|
201 | (1) |
|
9.4.1.3 Models Based on Turbulent Kinetic Energy |
|
|
202 | (2) |
|
9.4.1.4 One-Equation Models |
|
|
204 | (1) |
|
9.4.1.5 Two-Equation Models |
|
|
204 | (4) |
|
9.4.1.6 Modeling Flow Near Wall |
|
|
208 | (4) |
|
9.4.2 Rotor-Stator Interface |
|
|
212 | (2) |
|
9.5 CFD Simulation Workflow |
|
|
214 | (8) |
|
9.5.1 CFD Computational Domain |
|
|
215 | (1) |
|
|
215 | (3) |
|
9.5.3 General Settings, Boundary, and Initial Conditions |
|
|
218 | (3) |
|
|
221 | (1) |
|
|
222 | (1) |
|
9.6 Processing CFD Simulation Results |
|
|
222 | (4) |
|
9.6.1 Checking the Accuracy of the Results |
|
|
222 | (1) |
|
9.6.2 Evaluation of Monitored Parameters |
|
|
222 | (4) |
|
|
226 | (18) |
|
|
244 | (1) |
Index |
|
245 | |