Muutke küpsiste eelistusi

Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS [Kõva köide]

  • Formaat: Hardback, 282 pages, kõrgus x laius: 235x155 mm, kaal: 653 g, XLII, 282 p., 1 Hardback
  • Sari: Analog Circuits and Signal Processing
  • Ilmumisaeg: 12-May-2011
  • Kirjastus: Springer
  • ISBN-10: 9400714351
  • ISBN-13: 9789400714359
  • Kõva köide
  • Hind: 169,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 198,99 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 282 pages, kõrgus x laius: 235x155 mm, kaal: 653 g, XLII, 282 p., 1 Hardback
  • Sari: Analog Circuits and Signal Processing
  • Ilmumisaeg: 12-May-2011
  • Kirjastus: Springer
  • ISBN-10: 9400714351
  • ISBN-13: 9789400714359
CMOS DC-DC Converters aims to provide a comprehensive dissertation on the matter of monolithic inductive Direct-Current to Direct-Current (DC-DC) converters. For this purpose seven chapters are defined which will allow the designer to gain specific knowledge on the design and implementation of monolithic inductive DC-DC converters, starting from the very basics.

CMOS DC-DC Converters provides a comprehensive overview of monolithic inductive Direct-Current to Direct-Current (DC-DC) converters. Readers will gain specific knowledge on the design and implementation of monolithic inductive DC-DC converters, starting from the very basics.
1 Introduction
1(26)
1.1 The Origin of DC-DC Converters
2(7)
1.1.1 Basic Considerations
2(1)
1.1.2 Historical Notes
3(6)
1.2 Low Power DC-DC Converter Applications
9(5)
1.2.1 Mains-Operated
10(1)
1.2.2 Battery-Operated
11(3)
1.3 Monolithic DC-DC Converters: A Glimpse into the Future
14(9)
1.3.1 CMOS Technology
15(5)
1.3.2 The Challenges
20(3)
1.4 Structural Outline
23(1)
1.5 Conclusions
24(3)
2 Basic DC-DC Converter Theory
27(38)
2.1 Linear Voltage Converters
27(4)
2.1.1 Series Converter
28(1)
2.1.2 Shunt Converter
29(2)
2.2 Charge-Pump DC-DC Converters
31(10)
2.2.1 On Capacitors
32(2)
2.2.2 Series-Parallel Step-Down Converter
34(4)
2.2.3 Series-Parallel Step-Up Converter
38(3)
2.3 Inductive Type DC-DC Converters
41(18)
2.3.1 On Inductors
41(3)
2.3.2 Inductors and Capacitors: The Combination
44(5)
2.3.3 Reflections on Steady-State Calculation Methods
49(10)
2.4 INTERMEZZO: The Efficiency Enhancement Factor
59(3)
2.4.1 The Concept
59(2)
2.4.2 Interpretations
61(1)
2.5 Conclusions
62(3)
3 Inductive DC-DC Converter Topologies
65(58)
3.1 Step-Down Converters
65(17)
3.1.1 Buck Converter
66(6)
3.1.2 Bridge Converter
72(2)
3.1.3 Three-Level Buck Converter
74(3)
3.1.4 Buck2 Converter
77(2)
3.1.5 Watkins-Johnson Converter
79(2)
3.1.6 Step-Down Converter Summary
81(1)
3.2 Step-Up Converters
82(8)
3.2.1 Boost Converter
84(1)
3.2.2 Current-Fed Bridge Converter
85(1)
3.2.3 Inverse Watkins-Johnson Converter
86(2)
3.2.4 Step-Up Converter Summary
88(2)
3.3 Step-Up/Down Converters
90(9)
3.3.1 Buck-Boost Converter
91(1)
3.3.2 Non-inverting Buck-Boost Converter
92(1)
3.3.3 Cuk Converter
93(1)
3.3.4 SEPIC Converter
94(1)
3.3.5 Zeta Converter
95(2)
3.3.6 Step-Up/Down Converter Summary
97(2)
3.4 Other Types of Inductive DC-DC Converters
99(8)
3.4.1 Galvanic Separated Converters
99(5)
3.4.2 Resonant DC-DC Converters
104(3)
3.5 Topology Variations
107(14)
3.5.1 Multi-phase DC-DC Converters
107(8)
3.5.2 Single-Inductor Multiple-Output DC-DC Converters
115(3)
3.5.3 On-Chip Topologies
118(3)
3.6 Conclusions
121(2)
4 A Mathematical Model: Boost and Buck Converter
123(46)
4.1 Second-Order Model: Boost and Buck Converter
124(11)
4.1.1 Differential Equations: Boost Converter
124(2)
4.1.2 Calculating the Output Voltage: Boost Converter
126(5)
4.1.3 Differential Equations: Buck Converter
131(1)
4.1.4 Calculating the Output Voltage: Buck Converter
132(3)
4.2 Non-ideal Converter Components Models
135(23)
4.2.1 Inductor
136(6)
4.2.2 Capacitor
142(4)
4.2.3 Switches
146(6)
4.2.4 Buffers
152(2)
4.2.5 Interconnect
154(4)
4.3 Temperature Effects
158(2)
4.3.1 Inductor
159(1)
4.3.2 Switches
159(1)
4.4 The Final Model Flow
160(7)
4.4.1 Inserting the Dynamic Losses
161(2)
4.4.2 Inserting the Temperature Effects
163(1)
4.4.3 Reflections on Design
164(3)
4.5 Conclusions
167(2)
5 Control Systems
169(44)
5.1 Inductive Type Converter Control Strategies
170(11)
5.1.1 Pulse Width Modulation
170(5)
5.1.2 Pulse Frequency Modulation
175(1)
5.1.3 Pulse Width Modulation vs. Pulse Frequency Modulation
176(5)
5.2 Constant On/Off-Time: COOT
181(12)
5.2.1 The COOT Concept
181(3)
5.2.2 Single-Phase, Single-Output Implementations
184(4)
5.2.3 Single-Phase, Two-Output SIMO Implementation
188(5)
5.3 Semi-Constant On/Off-Time: SCOOT
193(10)
5.3.1 The SCOOT Concept
193(2)
5.3.2 Multi-phase Implementations
195(8)
5.4 Feed-Forward Semi-Constant On/Off-Time: F2-SCOOT
203(6)
5.4.1 The F2-SCOOT Concept
203(2)
5.4.2 Single-Phase, Two-Output Implementation
205(4)
5.5 Start-up
209(2)
5.5.1 The Concept
210(1)
5.5.2 Implementations
210(1)
5.6 Conclusions
211(2)
6 Implementations
213(48)
6.1 Monolithic Converter Components
214(10)
6.1.1 Inductor
214(2)
6.1.2 Capacitor
216(4)
6.1.3 Switches
220(4)
6.2 On Measuring DC-DC Converters
224(4)
6.2.1 Main Principles
224(2)
6.2.2 Practical Example
226(2)
6.3 Boost Converters
228(7)
6.3.1 Bondwire, Single-Phase, Single-Output
228(4)
6.3.2 Metal-Track, Single-Phase, Two-Output SIMO
232(3)
6.4 Buck Converters
235(19)
6.4.1 Bondwire, Single-Phase, Single-Output
236(4)
6.4.2 Metal-Track, Single-Phase, Single-Output
240(4)
6.4.3 Metal-Track, Four-Phase, Single Output
244(4)
6.4.4 Metal-Track, Four-Phase, Two-Output SMOC
248(2)
6.4.5 Bondwire, Single-Phase, Two-Output SMOC
250(4)
6.5 Comparison to Other Work
254(5)
6.5.1 Inductive Step-Up Converters
255(1)
6.5.2 Inductive Step-Down Converters
256(3)
6.6 Conclusions
259(2)
7 General Conclusions
261(4)
7.1 Conclusions
261(2)
7.2 Remaining Challenges
263(2)
References 265(8)
Index 273