Muutke küpsiste eelistusi

Design of Thermal Barrier Coatings: A Modelling Approach 2015 ed. [Pehme köide]

  • Formaat: Paperback / softback, 82 pages, kõrgus x laius: 235x155 mm, kaal: 1766 g, 30 Illustrations, color; 13 Illustrations, black and white; XIV, 82 p. 43 illus., 30 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Materials
  • Ilmumisaeg: 20-May-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319172530
  • ISBN-13: 9783319172538
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 82 pages, kõrgus x laius: 235x155 mm, kaal: 1766 g, 30 Illustrations, color; 13 Illustrations, black and white; XIV, 82 p. 43 illus., 30 illus. in color., 1 Paperback / softback
  • Sari: SpringerBriefs in Materials
  • Ilmumisaeg: 20-May-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319172530
  • ISBN-13: 9783319172538
This book details the relationships between microstructure, interface roughness, and properties of thermal barrier coatings. The author proposes a method for the reduction of the thermal conductivity of the ceramic layer in order to increase the lifetime of thermal barrier coatings. He includes models for the optimization of ceramic layer microstructure and interface roughness.
1 Introduction
1(6)
1.1 Scope and Limitations
4(3)
References
5(2)
2 Background
7(10)
2.1 Thermal Spraying
7(2)
2.1.1 Atmospheric Plasma Spraying
7(2)
2.1.2 High Velocity Oxy-Fuel Spraying
9(1)
2.1.3 Liquid Feedstock Plasma Spraying
9(1)
2.2 Thermal Barrier Coatings
9(2)
2.3 Coating Formation
11(1)
2.4 Process Parameters
11(1)
2.5 Coating Materials for TBCs
12(5)
2.5.1 Topcoat
12(2)
2.5.2 Bondcoat
14(1)
2.5.3 Thermally Grown Oxides
14(1)
References
15(2)
3 Characteristics of TBCs
17(16)
3.1 Microstructure
17(3)
3.2 Heat Transfer Mechanism
20(3)
3.2.1 General Theory
20(2)
3.2.2 Application to TBCs
22(1)
3.3 Mechanical Behaviour
23(3)
3.3.1 Stress Formation
23(1)
3.3.2 Young's Modulus
24(1)
3.3.3 Non-linear Properties
25(1)
3.4 Interface Roughness
26(2)
3.4.1 Roughness Relationship with Lifetime
26(1)
3.4.2 Stress Inversion Theory
27(1)
3.5 Oxide Formation
28(1)
3.6 Failure Mechanisms
29(4)
References
30(3)
4 Experimental Methods
33(10)
4.1 Microstructure Characterisation
33(1)
4.2 Thermal Conductivity Measurements
33(2)
4.3 Young's Modulus Measurements
35(1)
4.4 Roughness Measurements
36(1)
4.5 Lifetime Testing
37(6)
References
40(3)
5 Modelling of Properties of TBCs
43(22)
5.1 Thermal Conductivity
43(4)
5.1.1 Analytical Models
43(2)
5.1.2 Numerical Models
45(2)
5.2 Young's Modulus
47(1)
5.2.1 Analytical Models
47(1)
5.2.2 Numerical Models
47(1)
5.3 Finite Element Modelling
48(6)
5.3.1 Basics of FEM and FDM
48(1)
5.3.2 Image Based Finite Element Model
49(5)
5.4 Artificial Coating Morphology Generator
54(2)
5.5 Recent Work
56(9)
References
61(4)
6 Modelling of Interface Roughness in TBCs
65(8)
6.1 Simplified Interface Roughness Modelling
65(1)
6.2 Real Interface Roughness Modelling
66(3)
6.2.1 Two-Dimensional Approach
66(2)
6.2.2 Three-Dimensional Approach
68(1)
6.3 Results
69(4)
References
71(2)
7 Modelling of Oxide Growth in TBCs
73(8)
7.1 Diffusion-Based Modelling
74(4)
7.1.1 Previous Work
74(1)
7.1.2 Real Interface Roughness Modelling
74(2)
7.1.3 Recent Work
76(2)
7.2 Mixed Oxide Growth
78(3)
References
80(1)
8 Conclusions: How to Design TBCs?
81
8.1 Future Work
82
Mohit comes from Lucknow in India and received his bachelors degree in mechanical engineering in 2009 from Indian Institute of Technology Kanpur, India. He received his masters degree in mechanical engineering in 2010 and doctoral degree in production technology in 2015 from University West, Sweden. He is currently employed as a senior researcher at University West. His research interests are finite element modelling, plasma spraying and solid oxide fuel cells.