Muutke küpsiste eelistusi

Designing Audio Power Amplifiers [Pehme köide]

  • Formaat: Paperback / softback, 640 pages, kõrgus x laius x paksus: 244x180x33 mm, kaal: 1032 g, 100 Illustrations
  • Ilmumisaeg: 16-Nov-2010
  • Kirjastus: TAB Books Inc
  • ISBN-10: 007164024X
  • ISBN-13: 9780071640244
  • Pehme köide
  • Hind: 63,99 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 640 pages, kõrgus x laius x paksus: 244x180x33 mm, kaal: 1032 g, 100 Illustrations
  • Ilmumisaeg: 16-Nov-2010
  • Kirjastus: TAB Books Inc
  • ISBN-10: 007164024X
  • ISBN-13: 9780071640244
"This practical guide is the single best source for designing and optimizing high-performance audio power amplifiers--for fun or profit"--

Provided by publisher.

This comprehensive book on audio power amplifier design will appeal to members of the professional audio engineering community as well as the hobbyist. Designing Audio Power Amplifiers begins with power amplifier design basics that a novice can understand and moves all the way through to in-depth design techniques for the very sophisticated audiophile and professional audio power amplifier designer. This is the single best source of knowledge for anyone who wants to design an audio power amplifier, whether for fun or profit.



The single best source for designing and optimizing high-performance audio power amplifiers

Designing Audio Power Amplifiers covers power amplifier basics all the way through to in-depth design techniques. This practical guide teaches you how to understand the concepts and nuances of power amplifiers, then analyze and synthesize the many possible variations of audio power amplifier design. An accompanying website includes invaluable downloads (SPICE, LTspice™, and Working LTspice simulations and models, datasheets of all transistors used in the book) to help you get started designing high-performance amplifiers quickly.

Designing Audio Power Amplifiers covers:

  • Ultra-low distortion input and voltage amplifier topologies
  • Non-conventional feedback compensation techniques
  • Lateral and vertical MOSFET power amplifiers
  • Output stage error correction circuits
  • Thermal stability analysis of BJT and MOSFET output stages
  • Output transistors with integral temperature tracking diodes
  • Integrated circuit amplifiers and drivers
  • SPICE simulation for amplifier design, including distortion analysis
  • Amplifier measurement instrumentation and techniques
  • PC-based instrumentation for amplifier evaluation
  • How amplifiers misbehave and why they sound different

Complete coverage of audio power amplifiers:
Basics; Power Amplifier Design Evolution; Negative Feedback, Compensation and Slew Rate; Amplifier Classes, Output Stages and Efficiency; Integrated Circuit Power Amplifiers and Drivers; Summary of Amplifier Design Considerations; Advanced Power Amplifier Design Techniques; Input and VAS Circuits; Advanced Forms of Feedback Compensation; Output Stage Design and Crossover Distortion; MOSFET Power Amplifiers; Error Correction; BJT and MOSFET Output Transistors; Other Sources of Distortion; Real-World Design Considerations; Output Stage Thermal Design and Stability; Safe Area and Short Circuit Protection; Power Supplies and Grounding; Clipping Control and Civilized Amplifier Behavior; Interfacing the Real World; Simulation and Measurement; SPICE Simulation; SPICE Models and Libraries; Audio Instrumentation; Distortion and its Measurement; Other Amplifier Tests; The Negative Feedback Controversy; Amplifiers without Negative Feedback; Balanced and Bridged Amplifiers

Preface xxix
Acknowledgments xxxi
Part 1 Audio Power Amplifier Basics
1(124)
1 Introduction
3(12)
1.1 Organization of the Book
3(1)
1.2 The Role of the Power Amplifier
4(1)
1.3 Basic Performance Specifications
5(2)
Rated Output Power
5(1)
Frequency Response
5(1)
Noise
6(1)
Distortion
7(1)
1.4 Additional Performance Specifications
7(3)
Damping Factor
8(1)
Dynamic Headroom
8(1)
Slew Rate
9(1)
Output Current
9(1)
Minimum Load Impedance
10(1)
1.5 Output Voltage and Current
10(1)
1.6 Basic Amplifier Topology
11(3)
1.7 Summary
14(1)
References
14(1)
2 Power Amplifier Basics
15(38)
2.1 About Transistors
15(10)
Current Gain
15(1)
Base-Emitter Voltage
16(1)
The Gummel Plot
17(1)
Transconductance
18(1)
Input Resistance
19(1)
Early Effect
19(1)
Junction Capacitance
20(1)
Speed and ƒT
21(2)
The Hybrid Pi Model
23(1)
The Ideal Transistor
23(1)
Safe Operating Area
23(1)
JFETs and MOSFETs
24(1)
2.2 Circuit Building Blocks
25(16)
Common-Emitter Stage
25(2)
Bandwidth of the Common-Emitter Stage and Miller Effect
27(1)
Differential Amplifier
28(2)
Emitter Follower
30(3)
Cascode
33(1)
Current Mirror
34(2)
Current Sources
36(4)
Vbe Multiplier
40(1)
2.3 Amplifier Design Analysis
41(10)
Basic Operation
42(1)
Input Stage
42(1)
The VAS
43(1)
Open-Loop Gain
44(1)
Miller Feedback Compensation
45(2)
The Output Stage
47(2)
Output Stage Bias Current
49(1)
Performance Limitations of the Simple Amplifier
50(1)
References
51(2)
3 Power Amplifier Design Evolution
53(26)
3.1 The Basic Power Amplifier
53(2)
3.2 Adding Input Stage Degeneration
55(4)
3.3 Adding a Darlington VAS
59(3)
3.4 Input Stage Current Mirror Load
62(2)
3.5 The Output Triple
64(4)
3.6 Cascoded VAS
68(1)
3.7 Paralleling Output Transistors
69(3)
3.8 Higher-Power Amplifiers
72(1)
3.9 Crossover Distortion
73(2)
3.10 Performance Summary
75(1)
3.11 Completing an Amplifier
75(2)
Input Network
75(1)
Feedback AC Decoupling Network
76(1)
Output Network
77(1)
Power Supply Decoupling
77(1)
3.12 Summary
77(1)
References
77(2)
4 Negative Feedback Compensation and Slew Rate
79(18)
4.1 How Negative Feedback Works
79(1)
4.2 Input-Referred Feedback Analysis
80(1)
4.3 Feedback Compensation and Stability
81(3)
Poles and Zeros
81(1)
Phase and Gain Margin
82(2)
Gain and Phase Variation
84(1)
4.4 Feedback Compensation Principles
84(3)
Dominant Pole Compensation
84(1)
Excess Phase
84(1)
Lag Compensation
85(1)
Miller Compensation
86(1)
4.5 Evaluating Loop Gain
87(2)
Breaking the Loop
87(2)
Exposing Open-Loop Gain
89(1)
Simulation
89(1)
4.6 Evaluating Stability
89(3)
Probing Internal Nodes in Simulation
90(1)
Checking Gain Margin
91(1)
Checking Phase Margin
91(1)
Recommendations
91(1)
4.7 Compensation Loop Stability
92(1)
4.8 Slew Rate
93(2)
Calculating the Required Miller Capacitance
93(1)
Slew Rate
94(1)
References
95(2)
5 Amplifier Classes, Output Stages, and Efficiency
97(20)
5.1 Class A, AB, and B Operation
97(1)
5.2 The Complementary Emitter Follower Output Stage
98(5)
Output Stage Voltage Gain
99(2)
The Optimal Class AB Bias Condition
101(1)
Output Stage Bias Current
101(1)
gm Doubling
102(1)
The Small Class A Region of Many Amplifiers
103(1)
5.3 Output Stage Efficiency
103(2)
Heat versus Sound Quality
104(1)
Estimating Power Dissipation
104(1)
Estimating the Input Power
104(1)
An Example
105(1)
5.4 Complementary Feedback Pair Output Stages
105(5)
The Quasi-Complementary Output Stage
106(1)
The CFP Output Stage
106(1)
Biasing and Thermal Stability
107(1)
Optimum Class AB Bias Point and gm Doubling
107(1)
High-Frequency Stability
107(1)
Turn-Off Issues in CFP Output Stages
107(1)
Miller Effect in the CFP Output Stage
108(1)
CFP Triples
108(1)
CFP Degeneration
108(2)
5.5 Stacked Output Stage
110(1)
Cascode Output Stage
110(1)
Soft Rail Regulation
110(1)
5.6 Classes G and H
110(5)
Conflicting Terminology
110(1)
Class G Operation
111(2)
Class G Efficiency
113(1)
Choice of Intermediate Rail Voltage
113(1)
Headroom Considerations
113(1)
Rail Commutation Diode Speed
114(1)
The Transition to Cascode Operation
114(1)
Safe Operating Area
114(1)
5.7 Class D
115(1)
References
115(2)
6 Summary of Amplifier Design Considerations
117(8)
6.1 Power and Loads
117(1)
Worst-Case Loads
117(1)
Peak Output Current
117(1)
Slew Rate
118(1)
6.2 Sizing the Power Supply
118(1)
Average Power Supply Current
118(1)
Sizing the Power Transformer
118(1)
Sizing the Reservoir Capacitors
119(1)
6.3 Sizing the Output Stage
119(1)
Number of Output Pairs
119(1)
6.4 Sizing the Heat Sink
120(1)
A Simple Guideline
120(1)
6.5 Protecting the Amplifier and Loudspeaker
121(1)
Loudspeaker Protection
121(1)
Short Circuit Protection
121(1)
Safe Area Protection
121(1)
6.6 Power and Ground Distribution
121(1)
When Ground is Not Ground
122(1)
Ground Loops
122(1)
Nonlinear Power Supply Currents
122(1)
Current Flows Through the Shortest Path
122(1)
6.7 Other Considerations
122(1)
Output Stage Bias and Thermal Stability
122(1)
Output Node Catch Diodes
123(1)
Protection of Speaker Relay Contacts
123(1)
Physical Design and Layout
123(1)
The Feedback Path
123(1)
References
123(2)
Part 2 Advanced Power Amplifier Design Techniques
125(150)
7 Input and VAS Circuits
127(28)
7.1 Single-Ended IPS-VAS
127(4)
Improved Single-Ended IPS-VAS
128(1)
Shortcoming of the Single-Ended IPS-VAS
128(2)
Opportunities for Further Improvement
130(1)
Input Stage Stress
130(1)
7.2 JFET Input Stages
131(5)
JFET Transistors
132(1)
JFET Id versus V gs Behavior
133(2)
JFET RFI Immunity
135(1)
Voltage Ratings
135(1)
JFET Input Pairs and Matching
136(1)
7.3 Complementary IPS and Push-Pull VAS
136(6)
Complementary IPS with Current Mirrors
137(3)
Complementary IPS with JFETs
140(1)
Floating Complementary JFET-IPS
141(1)
Complementary IPS with Unipolar JFETs
142(1)
7.4 Unipolar Input Stage and Push-Pull VAS
142(4)
Differential Pair VAS with Current Mirror
143(1)
IPS with Differential Current Mirror Load
144(2)
7.5 Input Common Mode Distortion
146(1)
7.6 Early Effect
147(1)
7.7 Baker Clamps
148(1)
7.8 Amplifier Noise
148(5)
Noise Power
148(1)
Noise Bandwidth
149(1)
Noise Voltage Density
149(1)
Relating Input Noise Density to Signal-to-Noise Ratio
149(1)
A-Weighted Noise Specifications
149(1)
VAS Noise
150(1)
Power Supply Noise
150(1)
Resistor Noise
151(1)
Shot Noise
151(1)
BJT Input Noise Current
152(1)
Noise of a Degenerated LTP
152(1)
JFET Noise
152(1)
Noise Simulation
153(1)
References
153(2)
8 DC Servos
155(16)
8.1 Origins and Consequences of DC Offset
156(4)
Input Bias Current
156(1)
Conflicting Impedance Requirements
157(1)
Bypassed Equalizing Resistor
158(1)
DC-Coupled Feedback Network
158(1)
Complementary Input Stages
159(1)
DC Trim Pots
159(1)
JFET Input Stages
160(1)
8.2 DC Servo Basics
160(4)
DC Servo Architectures
161(1)
Setting the Low-Frequency Corner
161(1)
Amount of Offset to Be Corrected
162(1)
Servo Control Range
163(1)
Servo Clipping
163(1)
Servo Headroom
163(1)
The JFET Advantage
163(1)
8.3 The Servo is in the Signal Path
164(3)
Servo Op Amp Distortion and Noise
164(1)
Adding a Second Pole
165(2)
8.4 DC Offset Detection and Protection
167(1)
8.5 DC Servo Example
167(2)
8.6 Eliminating the Input Coupling Capacitor
169(1)
8.7 DC Servo Design Issues and Nuances
169(2)
Servo Start-Up Transients
169(1)
Low-Frequency Testing of Amplifiers Employing Servos
169(1)
Simulation
169(2)
9 Advanced Forms of Feedback Compensation
171(14)
9.1 Understanding Stability Issues
172(1)
Dominant Pole Compensation
172(1)
9.2 Miller Compensation
172(5)
Pole-Splitting
174(1)
Limitation on Slew Rate
174(1)
Distortion Reduction as a Free Side Benefit
175(1)
VAS Output Impedance
175(1)
The Feed-Forward Zero
176(1)
Inserting a Zero to Cancel or Mitigate a Pole
176(1)
Power Supply Rejection
177(1)
Buffered Miller Feedback Pick-Off Point
177(1)
9.3 Two-Pole Compensation
177(3)
Conditional Stability
179(1)
Frequency Response Peaking and Overshoot
180(1)
9.4 Miller Input Compensation
180(2)
Combining the Best of Input and Miller Compensation
181(1)
Compensating the Compensation Loop
181(1)
9.5 Transitional Miller Compensation
182(1)
9.6 The Summing Node Pole
183(1)
References
183(2)
10 Output Stage Design and Crossover Distortion
185(30)
10.1 The Class AB Output Stage
185(1)
Class B or Class AB?
186(1)
10.2 Static Crossover Distortion
186(2)
Crossover Distortion as a Function of Signal Level
188(1)
10.3 Optimum Bias and Bias Stability
188(2)
Setting the Bias
189(1)
Bias Stability
189(1)
Dynamic Bias Stability
189(1)
The Bias Spreader
190(1)
10.4 Output Stage Driver Circuits
190(3)
Darlington Output Stage
190(1)
The Triple
191(1)
The Diamond Driver
191(2)
10.5 Output Transistor Matching Considerations
193(2)
Beta Matching
193(1)
Emitter and Base Resistance Matching
194(1)
Base Stopper Resistors
194(1)
10.6 Dynamic Crossover Distortion
195(5)
Transistor Turn-Off Current Requirements
195(2)
An Example BJT Power Transistor
197(1)
Turning off the Transistor under Conditions of Beta Droop and ƒ Droop
198(1)
The Role of Collector-Base Capacitance
198(1)
The Speedup Capacitor
199(1)
Current Slew Rate Requirements
200(1)
10.7 The Output Emitter Resistors
200(1)
Power Dissipation
200(1)
Inductance
201(1)
Paralleled Emitter Resistors
201(1)
10.8 Output Networks
201(4)
The Zobel Network
202(1)
Distributed Zobel Networks
203(1)
The Series L-R Network
203(1)
The Effect of the Coil on Sound Quality
203(1)
Variations on the Networks
204(1)
The Pi Output Network
204(1)
Eliminating the Output Coil
204(1)
10.9 Output Stage Frequency Response and Stability
205(4)
Variation with Operating Point
205(1)
Base Stopper Resistors
206(1)
Load Capacitance
206(1)
Excess Phase
207(1)
Gain and Phase Margin
207(1)
Stabilizing the Triple
207(2)
10.10 Sizing the Output Stage
209(1)
Power Dissipation
209(1)
Safe Operating Area
209(1)
10.11 Delivering High Current
210(2)
Driving Low-Impedance Loads
210(1)
Loudspeaker Peak Current Requirements
210(1)
Beta Droop
210(1)
fT Droop
211(1)
Safe Operating Area of the Driver
211(1)
10.12 Driving Paralleled Output Stages
212(1)
Output Transistor Current Sharing
212(1)
Output Transistor Capacitances
212(1)
10.13 Advanced Output Transistors
212(1)
References
213(2)
11 MOSFET Power Amplifiers
215(30)
11.1 MOSFET Types and Characteristics
216(2)
Lateral MOSFET Structure
217(1)
Vertical MOSFET Structure
218(1)
11.2 MOSFET Advantages and Disadvantages
218(6)
Freedom from Second Breakdown and Device Protection
218(2)
Fragile Gate Oxide
220(1)
The Body Diode
220(1)
Supply of High Current
220(2)
The Role of Rds (on)
222(1)
Transconductance
222(1)
High Speed
223(1)
Transconductance Frequency Response
223(1)
MOSFET Disadvantages and Caveats
223(1)
MOSFETs versus Bipolar Transistors
224(1)
11.3 Lateral versus Vertical Power MOSFETs
224(1)
11.4 Parasitic Oscillations
225(2)
Gate Stopper Resistors
225(1)
Origin of Parasitic Oscillations
225(1)
MOSFET Internal Inductances
226(1)
MOSFET Output Capacitance
226(1)
Gate Zobel Networks
226(1)
Ferrite Beads
227(1)
Paralleled MOSFETs
227(1)
Spotting Parasitic Oscillations
227(1)
11.5 Biasing Power MOSFETs
227(4)
TCvgs Crossover Current
228(1)
Bias Spreaders for MOSFET Output Stages
228(1)
Dynamic Thermal Bias Stability
229(2)
11.6 Crossover Distortion
231(3)
Transconductance Droop
231(1)
Absence of gm Doubling
232(1)
Use of Source Resistors
233(1)
Wingspread Simulations
233(1)
Memory Distortion
234(1)
11.7 Driving Power MOSFETs
234(6)
Driving the Gate Capacitance
235(1)
Gate-Source Capacitance
235(1)
Gate-Drain Capacitance
235(1)
Required Drive Current versus Slew Rate
236(1)
Excess Phase at Signal Peaks
236(1)
Driving Multiple Output Pairs
236(1)
Maximum Drive Considerations
237(1)
Gate Protection
237(1)
Flying Catch Diodes
237(1)
Natural Current Limiting
238(1)
Short Circuit Protection
238(1)
Folded Drivers
238(2)
Boosted Driver Supplies
240(1)
11.8 Paralleling and Matching MOSFETs
240(1)
11.9 Simulating MOSFET Power Amplifiers
241(2)
High-Frequency Simulations
243(1)
11.10 A MOSFET Power Amplifier Design
243(1)
References
243(2)
12 Error Correction
245(16)
12.1 Feed-Forward Error Correction
245(1)
Reduced Effectiveness at High Frequencies
246(1)
12.2 Hawksford Error Correction
246(2)
A Specialized Form of Negative Feedback
247(1)
Frequency Compensation
248(1)
Effect on Output Impedance
248(1)
12.3 Error Correction for MOSFET Output Stages
248(2)
Simplified Error-Correction Circuit
249(1)
Error-Correction Circuit Operating Voltage
250(1)
Error-Correction Circuit Clipping
250(1)
12.4 Stability and Compensation
250(3)
Stability Considerations
251(1)
Frequency Compensation Approach
251(1)
Simulation of Effective Gain Crossover Frequency
252(1)
Effect on the Global Feedback Loop
252(1)
12.5 Performance and Design Issues
253(4)
Trimming
253(1)
High-Frequency Limitations
254(1)
Nonlinearity in the Error Amplifier
254(1)
Headroom and Clipping
255(1)
Boosted Rails
255(1)
Use with Low-V gs MOSFETs
255(1)
Error Correction for BJT Output Stages
256(1)
12.6 Circuit Refinements and Nuances
257(2)
Complementary Error Amplifier
257(1)
CFP Error Amplifier
257(1)
Cascoded Drivers
258(1)
References
259(2)
13 Other Sources of Distortion
261(14)
13.1 Distortion Mechanisms
261(1)
13.2 Early Effect Distortion
262(1)
13.3 Junction Capacitance Distortion
262(1)
MOSFET Gate Capacitance Nonlinearity
262(1)
13.4 Grounding Distortion
263(1)
13.5 Power Rail Distortion
263(1)
Output Stage Power Supply Rejection
264(1)
13.6 Input Common Mode Distortion
264(1)
Testing for Common Mode Distortion
264(1)
13.7 Resistor Distortion
264(2)
13.8 Capacitor Distortion
266(1)
13.9 Inductor and Magnetic Distortions
267(1)
Magnetic Core Distortion
267(1)
Distortion from Proximity to Ferrous Materials
268(1)
Ferrite Beads
268(1)
13.10 Magnetic Induction Distortion
268(1)
Minimizing Magnetic Induction Distortion
268(1)
13.11 Fuse, Relay, and Connector Distortion
268(5)
Fuse Distortion
269(1)
Relay Distortion
269(3)
Connector Distortion
272(1)
13.12 Load-Induced Distortion
273(1)
13.13 EMI-Induced Distortion
273(1)
13.14 Thermally Induced Distortion (Memory Distortion)
273(1)
References
274(1)
Part 3 Real-World Design Considerations
275(108)
14 Output Stage Thermal Design and Stability
277(38)
14.1 Power Dissipation versus Power and Load
277(2)
14.2 Thermal Design Concepts and Thermal Models
279(6)
Temperature versus Log Time Plots
280(1)
Thermal Attenuation
280(1)
Lumped and Distributed Models
281(1)
Transient Thermal Impedance
281(1)
Thermal Simulation
282(2)
Measuring Heat Sink Thermal Resistance
284(1)
14.3 Transistor Power Ratings
285(1)
Transistor Insulators
286(1)
14.4 Sizing the Heat Sink
286(4)
Output Stage Power Dissipation
287(1)
Required Heat Sink Thermal Resistance
287(1)
Power Dissipation into Reactive Loads
287(1)
Transistor Junction Temperature
287(1)
The Thermal Breaker
288(1)
The Finger Test
288(1)
The Heat Sink Is Not Isothermal
288(1)
Sizing the Output Stage
288(2)
14.5 The Bias Spreader and Temperature Compensation
290(9)
The V be Multiplier
291(1)
V be Multiplier Impedance
291(2)
V be Multiplier Variations
293(1)
Darlington Bias Spreaders
294(1)
CFP Bias Spreaders
294(1)
Location of the Sensing Junction
295(1)
Isothermal Bias Spreader and Driver Circuit
296(1)
Thermal Attenuation Revisited
296(1)
Setting the Bias and the Temperature Compensation
297(1)
Biasing Lateral Power MOSFETs
297(1)
Biasing Vertical Power MOSFETs
298(1)
14.6 Thermal Bias Stability
299(4)
Local Bias Stability
299(3)
Base Stopper Resistors and Thermal Bias Stability
302(1)
Measuring Thermal Bias Stability
302(1)
Bias Stability of MOSFETs versus BJTs
302(1)
14.7 Thermal Lag Distortion
303(1)
14.8 Thermal Trak™ Power Transistors
304(9)
Construction and Physical Characteristics
304(1)
Bias Spreaders Employing Thermal Trak™ Transistors
305(2)
Tracking Diode Temperature Characteristics
307(1)
Thermal Model
307(2)
Tracking Diode Response Time
309(1)
Thermal Attenuation
310(1)
Compensation of Predriver and Driver
310(1)
Bias as a Function of Time
310(2)
THD as a Function of Bias Setting
312(1)
Thermal Trak™ Transistors as Part of a Monitoring and Protection Scheme
313(1)
References
313(2)
15 Safe Area and Short Circuit Protection
315(28)
15.1 Power Transistor Safe Operating Area
315(3)
Secondary Breakdown Mechanism
316(1)
Temperature Derating of SOA
317(1)
Transient SOA
317(1)
Long-Term Reliability and Destruct Point
317(1)
Managing Risk
318(1)
15.2 Output Stage Safe Operating Area
318(5)
Resistive Loads
318(1)
Reactive Loads
318(2)
Impedance and Conductance as a Function of Phase Angle
320(2)
Overlapped Elliptical Load Lines
322(1)
15.3 Short Circuit Protection
323(6)
Rail Fuses
325(1)
Current Limiting
325(1)
A Simple Current Limiter
325(1)
Natural Current Limiting
326(1)
Shutdown Circuits
327(1)
Speaker Relays
328(1)
Load-Sensing Circuits
328(1)
15.4 Safe-Area-Limiting Circuits
329(4)
Single-Slope V-I Limiters
330(1)
Multi-Slope V-I Limiters
331(1)
Drawbacks of V-I Limiters
331(2)
Flyback Protection Diodes
333(1)
Avoiding the Use of V-I Limiters
333(1)
15.5 Testing Safe-Area-Limiting Circuits
333(1)
Simulation of Protection Circuits
334(1)
15.6 Protection Circuits for MOSFETs
334(1)
15.7 Protecting the Driver Transistors
334(1)
15.8 Loudspeaker Protection Circuits
335(6)
Speaker Fuses
335(1)
The Speaker Relay and Its Control
335(1)
The TA7317 Loudspeaker Protection IC
336(2)
Protecting the Speaker Relay
338(1)
Closing the Feedback Loop Around a Protection Device
339(1)
Crowbar Circuits
340(1)
Avoiding Speaker Relays
340(1)
Protection Processors
341(1)
References
341(2)
16 Power Supplies and Grounding
343(20)
16.1 The Design of the Power Supply
343(3)
Alternative Supply Arrangements
343(1)
Boosted Supply Rails
344(1)
Power Supply Stiffness and Regulation
345(1)
Effective Power Supply Resistance
346(1)
16.2 Sizing the Transformer
346(2)
VA Rating Rules of Thumb
347(1)
VA versus Weight
347(1)
Toroid versus Conventional
347(1)
Modifying Toroidal Transformers
348(1)
16.3 Sizing the Rectifier
348(1)
16.4 Sizing the Reservoir Capacitors
349(2)
Equivalent Series Resistance (ESR) and Inductance (ESL)
349(1)
Bypasses and Snubbers for Reservoir Capacitors
350(1)
Split Reservoir Capacitors
351(1)
16.5 Rectifier Speed
351(2)
Soft Recovery and Fast Recovery
352(1)
Rectifier Noise and Snubbers
352(1)
Measuring Rectifier Performance
352(1)
16.6 Regulation and Active Smoothing of the Supply
353(1)
Regulation of Input and VAS Power Supplies
354(1)
16.7 SPICE Simulation of Power Supplies
354(1)
16.8 Soft-Start Circuits
355(2)
Passive Soft-Start Circuits
355(1)
Active Soft-Start Circuits
356(1)
16.9 Grounding Architectures
357(2)
Noisy and Quiet Grounds
357(1)
When Ground Is Not Ground
357(1)
Star Grounding
357(1)
Star-on-Star Grounding
358(1)
Ground Corruption
358(1)
Dual-Mono Designs
358(1)
16.10 Radiated Magnetic Fields
359(1)
Antenna Loop Area
359(1)
Circuit Path Crossing Angle
359(1)
16.11 Safety Circuits
359(1)
Safety Ground
359(1)
Breaking Safety Ground Loops
359(1)
16.12 DC on the Mains
360(1)
16.13 Switching Power Supplies
361(1)
References
362(1)
17 Clipping Control and Civilized Amplifier Behavior
363(10)
17.1 The Incidence of Clipping
363(1)
Clipping Experiments
364(1)
17.2 Clipping and Sticking
364(1)
17.3 Negative Feedback and Clipping
364(1)
17.4 Baker Clamps
365(3)
Flying Baker Clamps and Flying Catch Diodes
367(1)
Feedback Baker Clamps
367(1)
17.5 Soft Clipping
368(1)
The Klever Klipper
368(1)
17.6 Current Limiting
369(1)
Active Current Limiting
370(1)
Natural Current Limiting
370(1)
17.7 Parasitic Oscillation Bursts
370(1)
17.8 Optional Output Impedance
371(1)
References
371(2)
18 Interfacing the Real World
373(10)
18.1 The Amplifier-Loudspeaker Interface
373(3)
The Loudspeaker Is not a Resistive Load
373(2)
Transmission Line Effects of Speaker Cables
375(1)
18.2 EMI Ingress: Antennas Everywhere
376(4)
RFI and EMI
376(1)
EMI Ingress from the Amplifier Input
376(2)
Implications for Input Stage Design
378(1)
EMI Ingress from the Loudspeaker Cable
378(1)
Implications for Output Network Design
379(1)
Implications for Feedback Network Design
379(1)
EMI Ingress from the Mains
379(1)
EMI Distortion Mechanisms
379(1)
18.3 Input Filtering
380(1)
Achieving a Linear Phase Response
380(1)
18.4 Input Ground Loops
380(1)
Ground Break Resistor
380(1)
Balanced Inputs
380(1)
Interconnect Alternatives
381(1)
18.5 Mains Filtering
381(1)
Line Filters
381(1)
Ferrites and Inductors
381(1)
18.6 EMI Egress
381(1)
18.7 EMI Susceptibility Testing
381(1)
Cell Phones and Electric Drills
381(1)
EMI Generators
382(1)
References
382(1)
Part 4 Simulation and Measurement
383(114)
19 SPICE Simulation
385(34)
19.1 LTspice
385(2)
Installation
385(1)
The Toolbars
386(1)
Control Panel
387(1)
Help
387(1)
The LTspice Users' Group
387(1)
19.2 Schematic Capture
387(3)
Placing Components
388(1)
Picking and Placing Transistors
389(1)
Other Components and Subcircuit Libraries
389(1)
Parameterized Elements
389(1)
Completing the Schematic
389(1)
19.3 DC, AC, and Transient Simulation
390(4)
The DC Operating Point
390(1)
The SPICE Error Log
391(1)
Convergence
391(1)
AC Analysis
392(1)
Transient Simulation
393(1)
19.4 Distortion Analysis
394(2)
FFT Spectral Plots
394(1)
Optimizing FFT Simulations
395(1)
Total Harmonic Distortion
396(1)
19.5 Noise Analysis
396(1)
Noise of Individual Contributors
397(1)
Weighted Noise Simulations
397(1)
19.6 Controlled Voltage and Current Sources
397(1)
19.7 Swept and Stepped Simulations
398(2)
DC Sweep
398(1)
Dc Transfer
398(1)
Stepped Simulations
399(1)
Example: A Wingspread Simulation
399(1)
19.8 Plotting Results
400(3)
Gummel Plot
401(1)
Beta versus Ic
402(1)
Transconductance versus Ic
402(1)
19.9 Subcircuits
403(3)
Creating a Subcircuit
403(1)
The Symbol Editor
404(1)
Modifying an Existing Symbol
405(1)
Summary for Creating the LPF1 Symbol
405(1)
Using the Subcircuit in a Schematic
405(1)
Installing Subcircuit Models in a Library
405(1)
19.10 SPICE Models
406(2)
Bipolar Junction Transistors
406(1)
Junction Field Effect Transistors
406(1)
Power MOSFETs
407(1)
Include Statements
408(1)
Libraries
408(1)
19.11 Simulating a Power Amplifier
408(9)
DC Analysis
409(1)
Frequency Response
410(1)
1-kHz Transient Analysis
410(1)
20-kHz Transient Analysis
410(1)
Square-Wave Response
411(1)
1-kHz Total Harmonic Distortion
411(1)
20-kHz THD
412(1)
CCIF Intermodulation Distortion
413(1)
Signal-to-Noise Ratio
414(1)
Damping Factor and Output Impedance
415(1)
Stability
415(1)
Inferring Loop Gain
415(1)
Measuring Loop Gain
416(1)
Output Stage Power Dissipation
416(1)
Output Current Limiting
416(1)
Safe Operating Area
416(1)
References
417(2)
20 SPICE Models and Libraries
419(40)
20.1 Verifying SPICE Models
420(1)
The Hybrid Pi Model
420(1)
20.2 Tweaking SPICE Model
421(3)
A Typical SPICE Model File
421(1)
Base-Emitter Voltage
422(1)
Current Gain
423(1)
Speed
423(1)
Base-Emitter Capacitance
424(1)
Base-Collector Capacitance
424(1)
20.3 Creating a SPICE Model
424(16)
Gathering Data Sheet Information
425(1)
Measuring Device Data
425(1)
Saturation Current and Nominal V be
425(2)
Early Voltage
427(2)
Nominal Beta
429(1)
Beta Droop at High and Low Current
429(4)
Establish RB
433(1)
Establish RB at High Base Current
434(1)
Establish Nominal Transit Time and ƒt
435(1)
Establish ƒt Droop at High Current
435(2)
Establish ƒt Droop at Low Voltage and High Current
437(1)
Establish ƒt Droop at Low Current
437(2)
Determine Base-Collector Capacitance
439(1)
Check the Model
439(1)
BJT Model Example
439(1)
20.4 JFET Models
440(2)
DC Behavior of JFETs
440(1)
The JFET SPICE Model
441(1)
Creating and Tweaking the JFET Model
441(1)
20.5 Vertical Power MOSFET Models
442(5)
Establishing the DC Parameters
442(1)
Gate-Source Capacitance
443(1)
Gate-Drain Capacitance
444(1)
Cgd Test Circuit
444(1)
The Subcircuit Model
445(1)
Subthreshold Conduction
446(1)
Applicability
447(1)
Power Amplifier Design Concerns
447(1)
20.6 LTspice™ VDMOS Models
447(3)
Establishing the Model Parameters
448(1)
Applicability
449(1)
20.7 The EKV Model
450(4)
Subthreshold MOSFET Measurements
452(1)
Model Creation Procedure
453(1)
Applicability
454(1)
20.8 Hybrid VDMOS-EKV Model
454(1)
20.9 Lateral Power MOSFETs
455(1)
20.10 Installing Models
456(1)
References
456(3)
21 Audio Instrumentation
459(12)
21.1 Basic Audio Test Instruments
459(1)
Audio Oscillator
459(1)
AC Voltmeter
460(1)
Oscilloscope
460(1)
21.2 Dummy Loads
460(1)
Choose Load Resistors Wisely
460(1)
Inductive versus Noninductive
460(1)
Power Dissipation and Cooling
461(1)
Connecting to the Dummy Load
461(1)
21.3 Simulated Loudspeaker Loads
461(1)
Protection Circuit Testing
462(1)
21.4 THD Analyzer
462(2)
Interpreting Results
463(1)
Spectral Analysis
463(1)
Obtaining a THD Analyzer
464(1)
21.5 PC-Based Instruments
464(1)
Sound Card Software
464(1)
Sound Cards
465(1)
PC-Based Oscilloscopes
465(1)
21.6 Purpose-Built Test Gear
465(5)
Sound Card Interface Boxes
465(1)
The Distortion Magnifier
466(1)
Balanced Interfaces
467(1)
IM Test Signal Combiner
468(1)
Synchronous Tone Burst Generator
468(1)
Signal-to-Noise Measurement Preamp with A Weighting
469(1)
Powering Purpose-Built Test Equipment
469(1)
References
470(1)
22 Distortion and Its Measurement
471(18)
22.1 Nonlinearity and Its Consequences
471(1)
The Order of a Nonlinearity
472(1)
22.2 Total Harmonic Distortion
472(2)
Interpretation of THD
472(1)
Advantages of THD
473(1)
Limitations of THD
474(1)
22.3 SMPTE IM
474(1)
22.4 CCIF IM
475(1)
22.5 TIM and SID
476(2)
Slew Rate Limiting and Input Stage Stress
476(1)
The DIM Test
477(1)
THD-20 Will Always Accompany TIM
477(1)
22.6 PIM
478(2)
Differential Gain and Phase
478(1)
Measuring PIM
479(1)
Negative Feedback and PIM
479(1)
Input Stage Stress
480(1)
PIM in Amplifiers Without Negative Feedback
480(1)
22.7 IIM
480(4)
Loudspeaker emf and Peak Current Requirements
481(1)
High-Current Amplifier Design
482(1)
Measuring IIM
482(1)
Open-Loop Output Impedance
483(1)
22.8 Multitone Intermodulation Distortion
484(1)
22.9 Highly Sensitive Distortion Measurement
484(1)
22.10 Input-Referred Distortion Analysis
485(1)
Input Referral Breaks the Feedback Loop
485(1)
Input Referral Demonstrates Why High Forward-Path Gain Reduces Distortion
485(1)
References
486(3)
23 Other Amplifier Tests
489(8)
23.1 Measuring Damping Factor
489(1)
23.2 Sniffing Parasitic Oscillations
490(1)
23.3 EMI Ingress Susceptibility
491(1)
23.4 Burst Power and Peak Current
492(1)
23.5 PSRR Tests
493(1)
23.6 Low-Frequency Tests
493(1)
Beat Frequency Tests
493(1)
23.7 Back-Feeding Tests
494(1)
Back-Fed Beat Frequency Test
494(1)
THD-20 in the Presence of Low-Frequency Back-Feed
494(1)
Current-Induced Distortion Tests
495(1)
References
495(2)
Part 5 Topics in Amplifier Design
497(54)
24 The Negative Feedback Controversy
499(10)
24.1 How Negative Feedback Got its Bad Rap
499(1)
Amplifier Limitations of the 1970s
499(1)
Guilt by Association
499(1)
TIM, PIM, and IIM
500(1)
24.2 Negative Feedback and Open-Loop Bandwidth
500(2)
The Input Stage Error Signal
500(2)
24.3 Spectral Growth Distortion
502(3)
Baxandall's Findings
502(1)
Real-World Amplifiers
503(1)
Degeneration and SGD
503(1)
SGD and Crossover Distortion
504(1)
24.4 Global versus Local Feedback
505(1)
24.5 Timeliness of Correction
505(1)
24.6 EMI from the Speaker Cable
505(1)
24.7 Stability and Burst Oscillations
505(1)
24.8 Clipping Behavior
506(1)
References
506(3)
25 Amplifiers Without Negative Feedback
509(18)
25.1 Design Trade-Offs and Challenges
509(10)
Input Stage Dynamic Range and Distortion
510(2)
JEET Input Buffers
512(1)
Cascoding the Input Stage
512(1)
Gain Allocation
512(1)
Controlling VAS Gain
513(1)
VAS Noise
514(1)
Amplifiers with Local Negative Feedback
515(1)
Output Stage Distortion
515(1)
MOSFET Output Stages
516(1)
Damping Factor
517(1)
Power Supply Rejection and Power Supply Design
518(1)
DC Offset
518(1)
Balanced Inputs
519(1)
25.2 Additional Design Techniques
519(3)
A Complementary IPS-VAS
519(1)
The Cascomp Input Stage
520(2)
25.3 An Example Design with No Feedback
522(2)
25.4 A Feedback Amplifier with Wide Open-Loop Bandwidth
524(2)
Achieving Wide Open-Loop Bandwidth
524(1)
A 200-W MOSFET Design
524(2)
References
526(1)
26 Balanced and Bridged Amplifiers
527(10)
26.1 Balanced Input Amplifiers
527(4)
Gain and Input Impedance Considerations
527(1)
Single and Triple Op-Amp Solutions
528(1)
Configuring the Power Amplifier as a Differential Amplifier
529(1)
The Differential Complementary Feedback Quad (DCFQ)
530(1)
26.2 Bridged Amplifiers
531(2)
Sound Quality
532(1)
Power Supply Advantages
532(1)
26.3 Balanced Amplifiers
533(4)
True Balanced Amplifiers
533(1)
Differential-Mode Feedback
533(1)
Differential-Mode DC Servo
534(1)
Common-Mode DC Servo
534(3)
27 Integrated Circuit Power Amplifiers and Drivers
537(14)
27.1 IC Power Amplifiers
537(1)
27.2 The Gain Clones
538(1)
A Basic Gain Clone Design
538(1)
A Gain Clone Using the Inverting Mode
538(1)
Avoiding Electrolytic Capacitors While Controlling Offset
539(1)
27.3 The Super Gain Clone
539(3)
Input Circuits
539(2)
Power Amplifier
541(1)
Output Network
541(1)
DC Servo
541(1)
Performance
541(1)
27.4 Integrated Circuit Drivers
542(2)
The LME49810
542(2)
The LME49830
544(1)
27.5 An Integrated Circuit Bias Controller
544(6)
Compensation of the Amplifier
547(1)
Compensation of the LT1166
548(1)
A Non-Switching Amplifier
548(1)
A MOSFET Power Amplifier Using the LT1166 and LME49830
548(2)
27.6 Summary
550(1)
References
550(1)
Part 6 Class D Amplifiers
551(50)
28 Class D Audio Amplifiers
553(12)
28.1 How Class D Amplifiers Work
554(1)
Analog Class D and Digital Class D
555(1)
Synchronous and Asynchronous Class D
555(1)
28.2 Buck Converters
555(7)
Synchronous Buck Converter
557(1)
Gate Drive Requirements and Power Dissipation
558(1)
Gate Charge
558(2)
MOSFET Figure of Merit
560(1)
Conduction Loss
560(1)
Switching Loss
561(1)
Reverse Recovery Loss
561(1)
28.3 Class D Output Stages
562(2)
Single-Ended and H-Bridge Output Stages
562(1)
N-Channel Output Stages
562(1)
Gate Drive Control
563(1)
Dead Time Control
563(1)
Adaptive Dead Time Control
564(1)
28.4 Summary
564(1)
References
564(1)
29 Class D Design Issues
565(18)
29.1 The Output Filter and EMI
565(4)
The Zobel Network
567(1)
Differing Loudspeaker Impedance
567(1)
Linear Phase Approximation
567(1)
Reducing Output Filter Size
567(1)
Input Filter and Aliasing
568(1)
Other EMI Issues
568(1)
Output Filter Distortion
568(1)
29.2 Sources of Distortion
569(5)
Triangle Reference Linearity and Bandwidth
569(1)
Pulse Width Quantization
569(1)
Dead Time
569(2)
PWM Crossover Distortion
571(1)
The PWM Central Region
572(1)
Extending the PWM Central Region
573(1)
Asymmetrical Rise/Fall Times
573(1)
Body Diode Conduction Time
573(1)
Sliver Pulses
573(1)
29.3 Bus Pumping
574(1)
29.4 Power Supply Rejection
575(1)
Loop Gain Modulation
576(1)
Power Supply Feedback to the Triangle Generator
576(1)
29.5 Power Supplies for Class D Amplifiers
576(1)
Linear Power Supplies
576(1)
Switching Power Supplies
577(1)
29.6 Negative Feedback
577(3)
Closing the Loop Before the Output Filter
578(1)
Closing the Loop Around the Output Filter
579(1)
29.7 Damping Factor and Load Invariance
580(1)
29.8 Summary
581(1)
References
581(2)
30 Alternative Class D Modulators
583(12)
30.1 Self-Oscillating Loops
583(4)
Self-Oscillation with Pre-filter Feedback
584(1)
Self-Oscillation with the Output Filter
585(1)
Self-Oscillation Using a One-Shot
585(1)
Synchronized Self-Oscillating Loops
586(1)
30.2 Sigma-Delta Modulators
587(6)
Oversampling
588(1)
High-Speed Class D Sigma-Delta Amplifiers
589(1)
High Sigma-Delta Modulator Clock Frequencies
590(1)
Adaptive Transition Density Limiting
590(1)
Noise Shaping
590(1)
Second-Order Sigma-Delta Modulators
591(1)
Higher-Order Sigma-Delta Modulators
592(1)
EMI of Sigma-Delta Class D Amplifiers
592(1)
The Output Filter
592(1)
Post-Filter Feedback
592(1)
30.3 Digital Modulators
593(1)
Digital PWM Modulators
593(1)
Digital Sigma-Delta Modulators
593(1)
Feedback and PSRR
593(1)
References
594(1)
31 Class D Measurement, Performance, and Efficiency
595(6)
31.1 Hybrid Class D
595(2)
31.2 Measuring Class D Amplifiers
597(2)
The AES17 Filter
597(1)
Total Harmonic Distortion
597(1)
SMPTE IM
598(1)
CCIF Tests
598(1)
Aliasing
598(1)
PSRR
598(1)
Conductive Emissions
599(1)
31.3 Achievable Performance
599(1)
Efficiency
599(1)
Distortion
599(1)
References
600(1)
Index 601
Bob Cordell, an electrical engineer, is a prolific designer of amplifiers, audio test equipment, and other audio gear. He has published articles on power amplifier design in the Journal of the Audio Engineering Society (JAES) and other publications. Bob is a member of the JAES Review Board and he maintains an audiophile website at www.cordellaudio.com.