Preface |
|
xxix | |
Acknowledgments |
|
xxxi | |
|
Part 1 Audio Power Amplifier Basics |
|
|
1 | (124) |
|
|
3 | (12) |
|
1.1 Organization of the Book |
|
|
3 | (1) |
|
1.2 The Role of the Power Amplifier |
|
|
4 | (1) |
|
1.3 Basic Performance Specifications |
|
|
5 | (2) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.4 Additional Performance Specifications |
|
|
7 | (3) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.5 Output Voltage and Current |
|
|
10 | (1) |
|
1.6 Basic Amplifier Topology |
|
|
11 | (3) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (38) |
|
|
15 | (10) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (2) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.2 Circuit Building Blocks |
|
|
25 | (16) |
|
|
25 | (2) |
|
Bandwidth of the Common-Emitter Stage and Miller Effect |
|
|
27 | (1) |
|
|
28 | (2) |
|
|
30 | (3) |
|
|
33 | (1) |
|
|
34 | (2) |
|
|
36 | (4) |
|
|
40 | (1) |
|
2.3 Amplifier Design Analysis |
|
|
41 | (10) |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
Miller Feedback Compensation |
|
|
45 | (2) |
|
|
47 | (2) |
|
Output Stage Bias Current |
|
|
49 | (1) |
|
Performance Limitations of the Simple Amplifier |
|
|
50 | (1) |
|
|
51 | (2) |
|
3 Power Amplifier Design Evolution |
|
|
53 | (26) |
|
3.1 The Basic Power Amplifier |
|
|
53 | (2) |
|
3.2 Adding Input Stage Degeneration |
|
|
55 | (4) |
|
3.3 Adding a Darlington VAS |
|
|
59 | (3) |
|
3.4 Input Stage Current Mirror Load |
|
|
62 | (2) |
|
|
64 | (4) |
|
|
68 | (1) |
|
3.7 Paralleling Output Transistors |
|
|
69 | (3) |
|
3.8 Higher-Power Amplifiers |
|
|
72 | (1) |
|
|
73 | (2) |
|
|
75 | (1) |
|
3.11 Completing an Amplifier |
|
|
75 | (2) |
|
|
75 | (1) |
|
Feedback AC Decoupling Network |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (2) |
|
4 Negative Feedback Compensation and Slew Rate |
|
|
79 | (18) |
|
4.1 How Negative Feedback Works |
|
|
79 | (1) |
|
4.2 Input-Referred Feedback Analysis |
|
|
80 | (1) |
|
4.3 Feedback Compensation and Stability |
|
|
81 | (3) |
|
|
81 | (1) |
|
|
82 | (2) |
|
|
84 | (1) |
|
4.4 Feedback Compensation Principles |
|
|
84 | (3) |
|
Dominant Pole Compensation |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
87 | (2) |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
89 | (3) |
|
Probing Internal Nodes in Simulation |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
4.7 Compensation Loop Stability |
|
|
92 | (1) |
|
|
93 | (2) |
|
Calculating the Required Miller Capacitance |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
95 | (2) |
|
5 Amplifier Classes, Output Stages, and Efficiency |
|
|
97 | (20) |
|
5.1 Class A, AB, and B Operation |
|
|
97 | (1) |
|
5.2 The Complementary Emitter Follower Output Stage |
|
|
98 | (5) |
|
Output Stage Voltage Gain |
|
|
99 | (2) |
|
The Optimal Class AB Bias Condition |
|
|
101 | (1) |
|
Output Stage Bias Current |
|
|
101 | (1) |
|
|
102 | (1) |
|
The Small Class A Region of Many Amplifiers |
|
|
103 | (1) |
|
5.3 Output Stage Efficiency |
|
|
103 | (2) |
|
Heat versus Sound Quality |
|
|
104 | (1) |
|
Estimating Power Dissipation |
|
|
104 | (1) |
|
Estimating the Input Power |
|
|
104 | (1) |
|
|
105 | (1) |
|
5.4 Complementary Feedback Pair Output Stages |
|
|
105 | (5) |
|
The Quasi-Complementary Output Stage |
|
|
106 | (1) |
|
|
106 | (1) |
|
Biasing and Thermal Stability |
|
|
107 | (1) |
|
Optimum Class AB Bias Point and gm Doubling |
|
|
107 | (1) |
|
|
107 | (1) |
|
Turn-Off Issues in CFP Output Stages |
|
|
107 | (1) |
|
Miller Effect in the CFP Output Stage |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
108 | (2) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
110 | (5) |
|
|
110 | (1) |
|
|
111 | (2) |
|
|
113 | (1) |
|
Choice of Intermediate Rail Voltage |
|
|
113 | (1) |
|
|
113 | (1) |
|
Rail Commutation Diode Speed |
|
|
114 | (1) |
|
The Transition to Cascode Operation |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
115 | (2) |
|
6 Summary of Amplifier Design Considerations |
|
|
117 | (8) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
118 | (1) |
|
6.2 Sizing the Power Supply |
|
|
118 | (1) |
|
Average Power Supply Current |
|
|
118 | (1) |
|
Sizing the Power Transformer |
|
|
118 | (1) |
|
Sizing the Reservoir Capacitors |
|
|
119 | (1) |
|
6.3 Sizing the Output Stage |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
120 | (1) |
|
6.5 Protecting the Amplifier and Loudspeaker |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
121 | (1) |
|
6.6 Power and Ground Distribution |
|
|
121 | (1) |
|
When Ground is Not Ground |
|
|
122 | (1) |
|
|
122 | (1) |
|
Nonlinear Power Supply Currents |
|
|
122 | (1) |
|
Current Flows Through the Shortest Path |
|
|
122 | (1) |
|
|
122 | (1) |
|
Output Stage Bias and Thermal Stability |
|
|
122 | (1) |
|
|
123 | (1) |
|
Protection of Speaker Relay Contacts |
|
|
123 | (1) |
|
Physical Design and Layout |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
123 | (2) |
|
Part 2 Advanced Power Amplifier Design Techniques |
|
|
125 | (150) |
|
|
127 | (28) |
|
|
127 | (4) |
|
Improved Single-Ended IPS-VAS |
|
|
128 | (1) |
|
Shortcoming of the Single-Ended IPS-VAS |
|
|
128 | (2) |
|
Opportunities for Further Improvement |
|
|
130 | (1) |
|
|
130 | (1) |
|
|
131 | (5) |
|
|
132 | (1) |
|
JFET Id versus V gs Behavior |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
135 | (1) |
|
JFET Input Pairs and Matching |
|
|
136 | (1) |
|
7.3 Complementary IPS and Push-Pull VAS |
|
|
136 | (6) |
|
Complementary IPS with Current Mirrors |
|
|
137 | (3) |
|
Complementary IPS with JFETs |
|
|
140 | (1) |
|
Floating Complementary JFET-IPS |
|
|
141 | (1) |
|
Complementary IPS with Unipolar JFETs |
|
|
142 | (1) |
|
7.4 Unipolar Input Stage and Push-Pull VAS |
|
|
142 | (4) |
|
Differential Pair VAS with Current Mirror |
|
|
143 | (1) |
|
IPS with Differential Current Mirror Load |
|
|
144 | (2) |
|
7.5 Input Common Mode Distortion |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (5) |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
149 | (1) |
|
Relating Input Noise Density to Signal-to-Noise Ratio |
|
|
149 | (1) |
|
A-Weighted Noise Specifications |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
Noise of a Degenerated LTP |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
153 | (2) |
|
|
155 | (16) |
|
8.1 Origins and Consequences of DC Offset |
|
|
156 | (4) |
|
|
156 | (1) |
|
Conflicting Impedance Requirements |
|
|
157 | (1) |
|
Bypassed Equalizing Resistor |
|
|
158 | (1) |
|
DC-Coupled Feedback Network |
|
|
158 | (1) |
|
Complementary Input Stages |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
160 | (4) |
|
|
161 | (1) |
|
Setting the Low-Frequency Corner |
|
|
161 | (1) |
|
Amount of Offset to Be Corrected |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
163 | (1) |
|
|
163 | (1) |
|
|
163 | (1) |
|
8.3 The Servo is in the Signal Path |
|
|
164 | (3) |
|
Servo Op Amp Distortion and Noise |
|
|
164 | (1) |
|
|
165 | (2) |
|
8.4 DC Offset Detection and Protection |
|
|
167 | (1) |
|
|
167 | (2) |
|
8.6 Eliminating the Input Coupling Capacitor |
|
|
169 | (1) |
|
8.7 DC Servo Design Issues and Nuances |
|
|
169 | (2) |
|
Servo Start-Up Transients |
|
|
169 | (1) |
|
Low-Frequency Testing of Amplifiers Employing Servos |
|
|
169 | (1) |
|
|
169 | (2) |
|
9 Advanced Forms of Feedback Compensation |
|
|
171 | (14) |
|
9.1 Understanding Stability Issues |
|
|
172 | (1) |
|
Dominant Pole Compensation |
|
|
172 | (1) |
|
|
172 | (5) |
|
|
174 | (1) |
|
|
174 | (1) |
|
Distortion Reduction as a Free Side Benefit |
|
|
175 | (1) |
|
|
175 | (1) |
|
|
176 | (1) |
|
Inserting a Zero to Cancel or Mitigate a Pole |
|
|
176 | (1) |
|
|
177 | (1) |
|
Buffered Miller Feedback Pick-Off Point |
|
|
177 | (1) |
|
9.3 Two-Pole Compensation |
|
|
177 | (3) |
|
|
179 | (1) |
|
Frequency Response Peaking and Overshoot |
|
|
180 | (1) |
|
9.4 Miller Input Compensation |
|
|
180 | (2) |
|
Combining the Best of Input and Miller Compensation |
|
|
181 | (1) |
|
Compensating the Compensation Loop |
|
|
181 | (1) |
|
9.5 Transitional Miller Compensation |
|
|
182 | (1) |
|
9.6 The Summing Node Pole |
|
|
183 | (1) |
|
|
183 | (2) |
|
10 Output Stage Design and Crossover Distortion |
|
|
185 | (30) |
|
10.1 The Class AB Output Stage |
|
|
185 | (1) |
|
|
186 | (1) |
|
10.2 Static Crossover Distortion |
|
|
186 | (2) |
|
Crossover Distortion as a Function of Signal Level |
|
|
188 | (1) |
|
10.3 Optimum Bias and Bias Stability |
|
|
188 | (2) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
10.4 Output Stage Driver Circuits |
|
|
190 | (3) |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
191 | (2) |
|
10.5 Output Transistor Matching Considerations |
|
|
193 | (2) |
|
|
193 | (1) |
|
Emitter and Base Resistance Matching |
|
|
194 | (1) |
|
|
194 | (1) |
|
10.6 Dynamic Crossover Distortion |
|
|
195 | (5) |
|
Transistor Turn-Off Current Requirements |
|
|
195 | (2) |
|
An Example BJT Power Transistor |
|
|
197 | (1) |
|
Turning off the Transistor under Conditions of Beta Droop and ƒ Droop |
|
|
198 | (1) |
|
The Role of Collector-Base Capacitance |
|
|
198 | (1) |
|
|
199 | (1) |
|
Current Slew Rate Requirements |
|
|
200 | (1) |
|
10.7 The Output Emitter Resistors |
|
|
200 | (1) |
|
|
200 | (1) |
|
|
201 | (1) |
|
Paralleled Emitter Resistors |
|
|
201 | (1) |
|
|
201 | (4) |
|
|
202 | (1) |
|
Distributed Zobel Networks |
|
|
203 | (1) |
|
|
203 | (1) |
|
The Effect of the Coil on Sound Quality |
|
|
203 | (1) |
|
Variations on the Networks |
|
|
204 | (1) |
|
|
204 | (1) |
|
Eliminating the Output Coil |
|
|
204 | (1) |
|
10.9 Output Stage Frequency Response and Stability |
|
|
205 | (4) |
|
Variation with Operating Point |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
207 | (1) |
|
|
207 | (2) |
|
10.10 Sizing the Output Stage |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
209 | (1) |
|
10.11 Delivering High Current |
|
|
210 | (2) |
|
Driving Low-Impedance Loads |
|
|
210 | (1) |
|
Loudspeaker Peak Current Requirements |
|
|
210 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
Safe Operating Area of the Driver |
|
|
211 | (1) |
|
10.12 Driving Paralleled Output Stages |
|
|
212 | (1) |
|
Output Transistor Current Sharing |
|
|
212 | (1) |
|
Output Transistor Capacitances |
|
|
212 | (1) |
|
10.13 Advanced Output Transistors |
|
|
212 | (1) |
|
|
213 | (2) |
|
11 MOSFET Power Amplifiers |
|
|
215 | (30) |
|
11.1 MOSFET Types and Characteristics |
|
|
216 | (2) |
|
|
217 | (1) |
|
Vertical MOSFET Structure |
|
|
218 | (1) |
|
11.2 MOSFET Advantages and Disadvantages |
|
|
218 | (6) |
|
Freedom from Second Breakdown and Device Protection |
|
|
218 | (2) |
|
|
220 | (1) |
|
|
220 | (1) |
|
|
220 | (2) |
|
|
222 | (1) |
|
|
222 | (1) |
|
|
223 | (1) |
|
Transconductance Frequency Response |
|
|
223 | (1) |
|
MOSFET Disadvantages and Caveats |
|
|
223 | (1) |
|
MOSFETs versus Bipolar Transistors |
|
|
224 | (1) |
|
11.3 Lateral versus Vertical Power MOSFETs |
|
|
224 | (1) |
|
11.4 Parasitic Oscillations |
|
|
225 | (2) |
|
|
225 | (1) |
|
Origin of Parasitic Oscillations |
|
|
225 | (1) |
|
MOSFET Internal Inductances |
|
|
226 | (1) |
|
MOSFET Output Capacitance |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
Spotting Parasitic Oscillations |
|
|
227 | (1) |
|
11.5 Biasing Power MOSFETs |
|
|
227 | (4) |
|
|
228 | (1) |
|
Bias Spreaders for MOSFET Output Stages |
|
|
228 | (1) |
|
Dynamic Thermal Bias Stability |
|
|
229 | (2) |
|
11.6 Crossover Distortion |
|
|
231 | (3) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
233 | (1) |
|
|
233 | (1) |
|
|
234 | (1) |
|
11.7 Driving Power MOSFETs |
|
|
234 | (6) |
|
Driving the Gate Capacitance |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
235 | (1) |
|
Required Drive Current versus Slew Rate |
|
|
236 | (1) |
|
Excess Phase at Signal Peaks |
|
|
236 | (1) |
|
Driving Multiple Output Pairs |
|
|
236 | (1) |
|
Maximum Drive Considerations |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
238 | (2) |
|
|
240 | (1) |
|
11.8 Paralleling and Matching MOSFETs |
|
|
240 | (1) |
|
11.9 Simulating MOSFET Power Amplifiers |
|
|
241 | (2) |
|
High-Frequency Simulations |
|
|
243 | (1) |
|
11.10 A MOSFET Power Amplifier Design |
|
|
243 | (1) |
|
|
243 | (2) |
|
|
245 | (16) |
|
12.1 Feed-Forward Error Correction |
|
|
245 | (1) |
|
Reduced Effectiveness at High Frequencies |
|
|
246 | (1) |
|
12.2 Hawksford Error Correction |
|
|
246 | (2) |
|
A Specialized Form of Negative Feedback |
|
|
247 | (1) |
|
|
248 | (1) |
|
Effect on Output Impedance |
|
|
248 | (1) |
|
12.3 Error Correction for MOSFET Output Stages |
|
|
248 | (2) |
|
Simplified Error-Correction Circuit |
|
|
249 | (1) |
|
Error-Correction Circuit Operating Voltage |
|
|
250 | (1) |
|
Error-Correction Circuit Clipping |
|
|
250 | (1) |
|
12.4 Stability and Compensation |
|
|
250 | (3) |
|
|
251 | (1) |
|
Frequency Compensation Approach |
|
|
251 | (1) |
|
Simulation of Effective Gain Crossover Frequency |
|
|
252 | (1) |
|
Effect on the Global Feedback Loop |
|
|
252 | (1) |
|
12.5 Performance and Design Issues |
|
|
253 | (4) |
|
|
253 | (1) |
|
High-Frequency Limitations |
|
|
254 | (1) |
|
Nonlinearity in the Error Amplifier |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
Use with Low-V gs MOSFETs |
|
|
255 | (1) |
|
Error Correction for BJT Output Stages |
|
|
256 | (1) |
|
12.6 Circuit Refinements and Nuances |
|
|
257 | (2) |
|
Complementary Error Amplifier |
|
|
257 | (1) |
|
|
257 | (1) |
|
|
258 | (1) |
|
|
259 | (2) |
|
13 Other Sources of Distortion |
|
|
261 | (14) |
|
13.1 Distortion Mechanisms |
|
|
261 | (1) |
|
13.2 Early Effect Distortion |
|
|
262 | (1) |
|
13.3 Junction Capacitance Distortion |
|
|
262 | (1) |
|
MOSFET Gate Capacitance Nonlinearity |
|
|
262 | (1) |
|
13.4 Grounding Distortion |
|
|
263 | (1) |
|
13.5 Power Rail Distortion |
|
|
263 | (1) |
|
Output Stage Power Supply Rejection |
|
|
264 | (1) |
|
13.6 Input Common Mode Distortion |
|
|
264 | (1) |
|
Testing for Common Mode Distortion |
|
|
264 | (1) |
|
|
264 | (2) |
|
13.8 Capacitor Distortion |
|
|
266 | (1) |
|
13.9 Inductor and Magnetic Distortions |
|
|
267 | (1) |
|
|
267 | (1) |
|
Distortion from Proximity to Ferrous Materials |
|
|
268 | (1) |
|
|
268 | (1) |
|
13.10 Magnetic Induction Distortion |
|
|
268 | (1) |
|
Minimizing Magnetic Induction Distortion |
|
|
268 | (1) |
|
13.11 Fuse, Relay, and Connector Distortion |
|
|
268 | (5) |
|
|
269 | (1) |
|
|
269 | (3) |
|
|
272 | (1) |
|
13.12 Load-Induced Distortion |
|
|
273 | (1) |
|
13.13 EMI-Induced Distortion |
|
|
273 | (1) |
|
13.14 Thermally Induced Distortion (Memory Distortion) |
|
|
273 | (1) |
|
|
274 | (1) |
|
Part 3 Real-World Design Considerations |
|
|
275 | (108) |
|
14 Output Stage Thermal Design and Stability |
|
|
277 | (38) |
|
14.1 Power Dissipation versus Power and Load |
|
|
277 | (2) |
|
14.2 Thermal Design Concepts and Thermal Models |
|
|
279 | (6) |
|
Temperature versus Log Time Plots |
|
|
280 | (1) |
|
|
280 | (1) |
|
Lumped and Distributed Models |
|
|
281 | (1) |
|
Transient Thermal Impedance |
|
|
281 | (1) |
|
|
282 | (2) |
|
Measuring Heat Sink Thermal Resistance |
|
|
284 | (1) |
|
14.3 Transistor Power Ratings |
|
|
285 | (1) |
|
|
286 | (1) |
|
14.4 Sizing the Heat Sink |
|
|
286 | (4) |
|
Output Stage Power Dissipation |
|
|
287 | (1) |
|
Required Heat Sink Thermal Resistance |
|
|
287 | (1) |
|
Power Dissipation into Reactive Loads |
|
|
287 | (1) |
|
Transistor Junction Temperature |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
288 | (1) |
|
The Heat Sink Is Not Isothermal |
|
|
288 | (1) |
|
|
288 | (2) |
|
14.5 The Bias Spreader and Temperature Compensation |
|
|
290 | (9) |
|
|
291 | (1) |
|
V be Multiplier Impedance |
|
|
291 | (2) |
|
V be Multiplier Variations |
|
|
293 | (1) |
|
Darlington Bias Spreaders |
|
|
294 | (1) |
|
|
294 | (1) |
|
Location of the Sensing Junction |
|
|
295 | (1) |
|
Isothermal Bias Spreader and Driver Circuit |
|
|
296 | (1) |
|
Thermal Attenuation Revisited |
|
|
296 | (1) |
|
Setting the Bias and the Temperature Compensation |
|
|
297 | (1) |
|
Biasing Lateral Power MOSFETs |
|
|
297 | (1) |
|
Biasing Vertical Power MOSFETs |
|
|
298 | (1) |
|
14.6 Thermal Bias Stability |
|
|
299 | (4) |
|
|
299 | (3) |
|
Base Stopper Resistors and Thermal Bias Stability |
|
|
302 | (1) |
|
Measuring Thermal Bias Stability |
|
|
302 | (1) |
|
Bias Stability of MOSFETs versus BJTs |
|
|
302 | (1) |
|
14.7 Thermal Lag Distortion |
|
|
303 | (1) |
|
14.8 Thermal Trak™ Power Transistors |
|
|
304 | (9) |
|
Construction and Physical Characteristics |
|
|
304 | (1) |
|
Bias Spreaders Employing Thermal Trak™ Transistors |
|
|
305 | (2) |
|
Tracking Diode Temperature Characteristics |
|
|
307 | (1) |
|
|
307 | (2) |
|
Tracking Diode Response Time |
|
|
309 | (1) |
|
|
310 | (1) |
|
Compensation of Predriver and Driver |
|
|
310 | (1) |
|
Bias as a Function of Time |
|
|
310 | (2) |
|
THD as a Function of Bias Setting |
|
|
312 | (1) |
|
Thermal Trak™ Transistors as Part of a Monitoring and Protection Scheme |
|
|
313 | (1) |
|
|
313 | (2) |
|
15 Safe Area and Short Circuit Protection |
|
|
315 | (28) |
|
15.1 Power Transistor Safe Operating Area |
|
|
315 | (3) |
|
Secondary Breakdown Mechanism |
|
|
316 | (1) |
|
Temperature Derating of SOA |
|
|
317 | (1) |
|
|
317 | (1) |
|
Long-Term Reliability and Destruct Point |
|
|
317 | (1) |
|
|
318 | (1) |
|
15.2 Output Stage Safe Operating Area |
|
|
318 | (5) |
|
|
318 | (1) |
|
|
318 | (2) |
|
Impedance and Conductance as a Function of Phase Angle |
|
|
320 | (2) |
|
Overlapped Elliptical Load Lines |
|
|
322 | (1) |
|
15.3 Short Circuit Protection |
|
|
323 | (6) |
|
|
325 | (1) |
|
|
325 | (1) |
|
|
325 | (1) |
|
|
326 | (1) |
|
|
327 | (1) |
|
|
328 | (1) |
|
|
328 | (1) |
|
15.4 Safe-Area-Limiting Circuits |
|
|
329 | (4) |
|
Single-Slope V-I Limiters |
|
|
330 | (1) |
|
|
331 | (1) |
|
Drawbacks of V-I Limiters |
|
|
331 | (2) |
|
Flyback Protection Diodes |
|
|
333 | (1) |
|
Avoiding the Use of V-I Limiters |
|
|
333 | (1) |
|
15.5 Testing Safe-Area-Limiting Circuits |
|
|
333 | (1) |
|
Simulation of Protection Circuits |
|
|
334 | (1) |
|
15.6 Protection Circuits for MOSFETs |
|
|
334 | (1) |
|
15.7 Protecting the Driver Transistors |
|
|
334 | (1) |
|
15.8 Loudspeaker Protection Circuits |
|
|
335 | (6) |
|
|
335 | (1) |
|
The Speaker Relay and Its Control |
|
|
335 | (1) |
|
The TA7317 Loudspeaker Protection IC |
|
|
336 | (2) |
|
Protecting the Speaker Relay |
|
|
338 | (1) |
|
Closing the Feedback Loop Around a Protection Device |
|
|
339 | (1) |
|
|
340 | (1) |
|
|
340 | (1) |
|
|
341 | (1) |
|
|
341 | (2) |
|
16 Power Supplies and Grounding |
|
|
343 | (20) |
|
16.1 The Design of the Power Supply |
|
|
343 | (3) |
|
Alternative Supply Arrangements |
|
|
343 | (1) |
|
|
344 | (1) |
|
Power Supply Stiffness and Regulation |
|
|
345 | (1) |
|
Effective Power Supply Resistance |
|
|
346 | (1) |
|
16.2 Sizing the Transformer |
|
|
346 | (2) |
|
|
347 | (1) |
|
|
347 | (1) |
|
Toroid versus Conventional |
|
|
347 | (1) |
|
Modifying Toroidal Transformers |
|
|
348 | (1) |
|
16.3 Sizing the Rectifier |
|
|
348 | (1) |
|
16.4 Sizing the Reservoir Capacitors |
|
|
349 | (2) |
|
Equivalent Series Resistance (ESR) and Inductance (ESL) |
|
|
349 | (1) |
|
Bypasses and Snubbers for Reservoir Capacitors |
|
|
350 | (1) |
|
Split Reservoir Capacitors |
|
|
351 | (1) |
|
|
351 | (2) |
|
Soft Recovery and Fast Recovery |
|
|
352 | (1) |
|
Rectifier Noise and Snubbers |
|
|
352 | (1) |
|
Measuring Rectifier Performance |
|
|
352 | (1) |
|
16.6 Regulation and Active Smoothing of the Supply |
|
|
353 | (1) |
|
Regulation of Input and VAS Power Supplies |
|
|
354 | (1) |
|
16.7 SPICE Simulation of Power Supplies |
|
|
354 | (1) |
|
|
355 | (2) |
|
Passive Soft-Start Circuits |
|
|
355 | (1) |
|
Active Soft-Start Circuits |
|
|
356 | (1) |
|
16.9 Grounding Architectures |
|
|
357 | (2) |
|
|
357 | (1) |
|
When Ground Is Not Ground |
|
|
357 | (1) |
|
|
357 | (1) |
|
|
358 | (1) |
|
|
358 | (1) |
|
|
358 | (1) |
|
16.10 Radiated Magnetic Fields |
|
|
359 | (1) |
|
|
359 | (1) |
|
Circuit Path Crossing Angle |
|
|
359 | (1) |
|
|
359 | (1) |
|
|
359 | (1) |
|
Breaking Safety Ground Loops |
|
|
359 | (1) |
|
|
360 | (1) |
|
16.13 Switching Power Supplies |
|
|
361 | (1) |
|
|
362 | (1) |
|
17 Clipping Control and Civilized Amplifier Behavior |
|
|
363 | (10) |
|
17.1 The Incidence of Clipping |
|
|
363 | (1) |
|
|
364 | (1) |
|
17.2 Clipping and Sticking |
|
|
364 | (1) |
|
17.3 Negative Feedback and Clipping |
|
|
364 | (1) |
|
|
365 | (3) |
|
Flying Baker Clamps and Flying Catch Diodes |
|
|
367 | (1) |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
368 | (1) |
|
|
369 | (1) |
|
|
370 | (1) |
|
|
370 | (1) |
|
17.7 Parasitic Oscillation Bursts |
|
|
370 | (1) |
|
17.8 Optional Output Impedance |
|
|
371 | (1) |
|
|
371 | (2) |
|
18 Interfacing the Real World |
|
|
373 | (10) |
|
18.1 The Amplifier-Loudspeaker Interface |
|
|
373 | (3) |
|
The Loudspeaker Is not a Resistive Load |
|
|
373 | (2) |
|
Transmission Line Effects of Speaker Cables |
|
|
375 | (1) |
|
18.2 EMI Ingress: Antennas Everywhere |
|
|
376 | (4) |
|
|
376 | (1) |
|
EMI Ingress from the Amplifier Input |
|
|
376 | (2) |
|
Implications for Input Stage Design |
|
|
378 | (1) |
|
EMI Ingress from the Loudspeaker Cable |
|
|
378 | (1) |
|
Implications for Output Network Design |
|
|
379 | (1) |
|
Implications for Feedback Network Design |
|
|
379 | (1) |
|
EMI Ingress from the Mains |
|
|
379 | (1) |
|
EMI Distortion Mechanisms |
|
|
379 | (1) |
|
|
380 | (1) |
|
Achieving a Linear Phase Response |
|
|
380 | (1) |
|
|
380 | (1) |
|
|
380 | (1) |
|
|
380 | (1) |
|
Interconnect Alternatives |
|
|
381 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
18.7 EMI Susceptibility Testing |
|
|
381 | (1) |
|
Cell Phones and Electric Drills |
|
|
381 | (1) |
|
|
382 | (1) |
|
|
382 | (1) |
|
Part 4 Simulation and Measurement |
|
|
383 | (114) |
|
|
385 | (34) |
|
|
385 | (2) |
|
|
385 | (1) |
|
|
386 | (1) |
|
|
387 | (1) |
|
|
387 | (1) |
|
|
387 | (1) |
|
|
387 | (3) |
|
|
388 | (1) |
|
Picking and Placing Transistors |
|
|
389 | (1) |
|
Other Components and Subcircuit Libraries |
|
|
389 | (1) |
|
|
389 | (1) |
|
|
389 | (1) |
|
19.3 DC, AC, and Transient Simulation |
|
|
390 | (4) |
|
|
390 | (1) |
|
|
391 | (1) |
|
|
391 | (1) |
|
|
392 | (1) |
|
|
393 | (1) |
|
|
394 | (2) |
|
|
394 | (1) |
|
Optimizing FFT Simulations |
|
|
395 | (1) |
|
Total Harmonic Distortion |
|
|
396 | (1) |
|
|
396 | (1) |
|
Noise of Individual Contributors |
|
|
397 | (1) |
|
Weighted Noise Simulations |
|
|
397 | (1) |
|
19.6 Controlled Voltage and Current Sources |
|
|
397 | (1) |
|
19.7 Swept and Stepped Simulations |
|
|
398 | (2) |
|
|
398 | (1) |
|
|
398 | (1) |
|
|
399 | (1) |
|
Example: A Wingspread Simulation |
|
|
399 | (1) |
|
|
400 | (3) |
|
|
401 | (1) |
|
|
402 | (1) |
|
Transconductance versus Ic |
|
|
402 | (1) |
|
|
403 | (3) |
|
|
403 | (1) |
|
|
404 | (1) |
|
Modifying an Existing Symbol |
|
|
405 | (1) |
|
Summary for Creating the LPF1 Symbol |
|
|
405 | (1) |
|
Using the Subcircuit in a Schematic |
|
|
405 | (1) |
|
Installing Subcircuit Models in a Library |
|
|
405 | (1) |
|
|
406 | (2) |
|
Bipolar Junction Transistors |
|
|
406 | (1) |
|
Junction Field Effect Transistors |
|
|
406 | (1) |
|
|
407 | (1) |
|
|
408 | (1) |
|
|
408 | (1) |
|
19.11 Simulating a Power Amplifier |
|
|
408 | (9) |
|
|
409 | (1) |
|
|
410 | (1) |
|
|
410 | (1) |
|
20-kHz Transient Analysis |
|
|
410 | (1) |
|
|
411 | (1) |
|
1-kHz Total Harmonic Distortion |
|
|
411 | (1) |
|
|
412 | (1) |
|
CCIF Intermodulation Distortion |
|
|
413 | (1) |
|
|
414 | (1) |
|
Damping Factor and Output Impedance |
|
|
415 | (1) |
|
|
415 | (1) |
|
|
415 | (1) |
|
|
416 | (1) |
|
Output Stage Power Dissipation |
|
|
416 | (1) |
|
|
416 | (1) |
|
|
416 | (1) |
|
|
417 | (2) |
|
20 SPICE Models and Libraries |
|
|
419 | (40) |
|
20.1 Verifying SPICE Models |
|
|
420 | (1) |
|
|
420 | (1) |
|
20.2 Tweaking SPICE Model |
|
|
421 | (3) |
|
A Typical SPICE Model File |
|
|
421 | (1) |
|
|
422 | (1) |
|
|
423 | (1) |
|
|
423 | (1) |
|
|
424 | (1) |
|
Base-Collector Capacitance |
|
|
424 | (1) |
|
20.3 Creating a SPICE Model |
|
|
424 | (16) |
|
Gathering Data Sheet Information |
|
|
425 | (1) |
|
|
425 | (1) |
|
Saturation Current and Nominal V be |
|
|
425 | (2) |
|
|
427 | (2) |
|
|
429 | (1) |
|
Beta Droop at High and Low Current |
|
|
429 | (4) |
|
|
433 | (1) |
|
Establish RB at High Base Current |
|
|
434 | (1) |
|
Establish Nominal Transit Time and ƒt |
|
|
435 | (1) |
|
Establish ƒt Droop at High Current |
|
|
435 | (2) |
|
Establish ƒt Droop at Low Voltage and High Current |
|
|
437 | (1) |
|
Establish ƒt Droop at Low Current |
|
|
437 | (2) |
|
Determine Base-Collector Capacitance |
|
|
439 | (1) |
|
|
439 | (1) |
|
|
439 | (1) |
|
|
440 | (2) |
|
|
440 | (1) |
|
|
441 | (1) |
|
Creating and Tweaking the JFET Model |
|
|
441 | (1) |
|
20.5 Vertical Power MOSFET Models |
|
|
442 | (5) |
|
Establishing the DC Parameters |
|
|
442 | (1) |
|
|
443 | (1) |
|
|
444 | (1) |
|
|
444 | (1) |
|
|
445 | (1) |
|
|
446 | (1) |
|
|
447 | (1) |
|
Power Amplifier Design Concerns |
|
|
447 | (1) |
|
20.6 LTspice™ VDMOS Models |
|
|
447 | (3) |
|
Establishing the Model Parameters |
|
|
448 | (1) |
|
|
449 | (1) |
|
|
450 | (4) |
|
Subthreshold MOSFET Measurements |
|
|
452 | (1) |
|
|
453 | (1) |
|
|
454 | (1) |
|
20.8 Hybrid VDMOS-EKV Model |
|
|
454 | (1) |
|
20.9 Lateral Power MOSFETs |
|
|
455 | (1) |
|
|
456 | (1) |
|
|
456 | (3) |
|
|
459 | (12) |
|
21.1 Basic Audio Test Instruments |
|
|
459 | (1) |
|
|
459 | (1) |
|
|
460 | (1) |
|
|
460 | (1) |
|
|
460 | (1) |
|
Choose Load Resistors Wisely |
|
|
460 | (1) |
|
Inductive versus Noninductive |
|
|
460 | (1) |
|
Power Dissipation and Cooling |
|
|
461 | (1) |
|
Connecting to the Dummy Load |
|
|
461 | (1) |
|
21.3 Simulated Loudspeaker Loads |
|
|
461 | (1) |
|
Protection Circuit Testing |
|
|
462 | (1) |
|
|
462 | (2) |
|
|
463 | (1) |
|
|
463 | (1) |
|
|
464 | (1) |
|
21.5 PC-Based Instruments |
|
|
464 | (1) |
|
|
464 | (1) |
|
|
465 | (1) |
|
|
465 | (1) |
|
21.6 Purpose-Built Test Gear |
|
|
465 | (5) |
|
Sound Card Interface Boxes |
|
|
465 | (1) |
|
|
466 | (1) |
|
|
467 | (1) |
|
|
468 | (1) |
|
Synchronous Tone Burst Generator |
|
|
468 | (1) |
|
Signal-to-Noise Measurement Preamp with A Weighting |
|
|
469 | (1) |
|
Powering Purpose-Built Test Equipment |
|
|
469 | (1) |
|
|
470 | (1) |
|
22 Distortion and Its Measurement |
|
|
471 | (18) |
|
22.1 Nonlinearity and Its Consequences |
|
|
471 | (1) |
|
The Order of a Nonlinearity |
|
|
472 | (1) |
|
22.2 Total Harmonic Distortion |
|
|
472 | (2) |
|
|
472 | (1) |
|
|
473 | (1) |
|
|
474 | (1) |
|
|
474 | (1) |
|
|
475 | (1) |
|
|
476 | (2) |
|
Slew Rate Limiting and Input Stage Stress |
|
|
476 | (1) |
|
|
477 | (1) |
|
THD-20 Will Always Accompany TIM |
|
|
477 | (1) |
|
|
478 | (2) |
|
Differential Gain and Phase |
|
|
478 | (1) |
|
|
479 | (1) |
|
Negative Feedback and PIM |
|
|
479 | (1) |
|
|
480 | (1) |
|
PIM in Amplifiers Without Negative Feedback |
|
|
480 | (1) |
|
|
480 | (4) |
|
Loudspeaker emf and Peak Current Requirements |
|
|
481 | (1) |
|
High-Current Amplifier Design |
|
|
482 | (1) |
|
|
482 | (1) |
|
Open-Loop Output Impedance |
|
|
483 | (1) |
|
22.8 Multitone Intermodulation Distortion |
|
|
484 | (1) |
|
22.9 Highly Sensitive Distortion Measurement |
|
|
484 | (1) |
|
22.10 Input-Referred Distortion Analysis |
|
|
485 | (1) |
|
Input Referral Breaks the Feedback Loop |
|
|
485 | (1) |
|
Input Referral Demonstrates Why High Forward-Path Gain Reduces Distortion |
|
|
485 | (1) |
|
|
486 | (3) |
|
|
489 | (8) |
|
23.1 Measuring Damping Factor |
|
|
489 | (1) |
|
23.2 Sniffing Parasitic Oscillations |
|
|
490 | (1) |
|
23.3 EMI Ingress Susceptibility |
|
|
491 | (1) |
|
23.4 Burst Power and Peak Current |
|
|
492 | (1) |
|
|
493 | (1) |
|
|
493 | (1) |
|
|
493 | (1) |
|
|
494 | (1) |
|
Back-Fed Beat Frequency Test |
|
|
494 | (1) |
|
THD-20 in the Presence of Low-Frequency Back-Feed |
|
|
494 | (1) |
|
Current-Induced Distortion Tests |
|
|
495 | (1) |
|
|
495 | (2) |
|
Part 5 Topics in Amplifier Design |
|
|
497 | (54) |
|
24 The Negative Feedback Controversy |
|
|
499 | (10) |
|
24.1 How Negative Feedback Got its Bad Rap |
|
|
499 | (1) |
|
Amplifier Limitations of the 1970s |
|
|
499 | (1) |
|
|
499 | (1) |
|
|
500 | (1) |
|
24.2 Negative Feedback and Open-Loop Bandwidth |
|
|
500 | (2) |
|
The Input Stage Error Signal |
|
|
500 | (2) |
|
24.3 Spectral Growth Distortion |
|
|
502 | (3) |
|
|
502 | (1) |
|
|
503 | (1) |
|
|
503 | (1) |
|
SGD and Crossover Distortion |
|
|
504 | (1) |
|
24.4 Global versus Local Feedback |
|
|
505 | (1) |
|
24.5 Timeliness of Correction |
|
|
505 | (1) |
|
24.6 EMI from the Speaker Cable |
|
|
505 | (1) |
|
24.7 Stability and Burst Oscillations |
|
|
505 | (1) |
|
|
506 | (1) |
|
|
506 | (3) |
|
25 Amplifiers Without Negative Feedback |
|
|
509 | (18) |
|
25.1 Design Trade-Offs and Challenges |
|
|
509 | (10) |
|
Input Stage Dynamic Range and Distortion |
|
|
510 | (2) |
|
|
512 | (1) |
|
Cascoding the Input Stage |
|
|
512 | (1) |
|
|
512 | (1) |
|
|
513 | (1) |
|
|
514 | (1) |
|
Amplifiers with Local Negative Feedback |
|
|
515 | (1) |
|
|
515 | (1) |
|
|
516 | (1) |
|
|
517 | (1) |
|
Power Supply Rejection and Power Supply Design |
|
|
518 | (1) |
|
|
518 | (1) |
|
|
519 | (1) |
|
25.2 Additional Design Techniques |
|
|
519 | (3) |
|
|
519 | (1) |
|
|
520 | (2) |
|
25.3 An Example Design with No Feedback |
|
|
522 | (2) |
|
25.4 A Feedback Amplifier with Wide Open-Loop Bandwidth |
|
|
524 | (2) |
|
Achieving Wide Open-Loop Bandwidth |
|
|
524 | (1) |
|
|
524 | (2) |
|
|
526 | (1) |
|
26 Balanced and Bridged Amplifiers |
|
|
527 | (10) |
|
26.1 Balanced Input Amplifiers |
|
|
527 | (4) |
|
Gain and Input Impedance Considerations |
|
|
527 | (1) |
|
Single and Triple Op-Amp Solutions |
|
|
528 | (1) |
|
Configuring the Power Amplifier as a Differential Amplifier |
|
|
529 | (1) |
|
The Differential Complementary Feedback Quad (DCFQ) |
|
|
530 | (1) |
|
|
531 | (2) |
|
|
532 | (1) |
|
|
532 | (1) |
|
|
533 | (4) |
|
|
533 | (1) |
|
Differential-Mode Feedback |
|
|
533 | (1) |
|
Differential-Mode DC Servo |
|
|
534 | (1) |
|
|
534 | (3) |
|
27 Integrated Circuit Power Amplifiers and Drivers |
|
|
537 | (14) |
|
|
537 | (1) |
|
|
538 | (1) |
|
A Basic Gain Clone Design |
|
|
538 | (1) |
|
A Gain Clone Using the Inverting Mode |
|
|
538 | (1) |
|
Avoiding Electrolytic Capacitors While Controlling Offset |
|
|
539 | (1) |
|
27.3 The Super Gain Clone |
|
|
539 | (3) |
|
|
539 | (2) |
|
|
541 | (1) |
|
|
541 | (1) |
|
|
541 | (1) |
|
|
541 | (1) |
|
27.4 Integrated Circuit Drivers |
|
|
542 | (2) |
|
|
542 | (2) |
|
|
544 | (1) |
|
27.5 An Integrated Circuit Bias Controller |
|
|
544 | (6) |
|
Compensation of the Amplifier |
|
|
547 | (1) |
|
Compensation of the LT1166 |
|
|
548 | (1) |
|
A Non-Switching Amplifier |
|
|
548 | (1) |
|
A MOSFET Power Amplifier Using the LT1166 and LME49830 |
|
|
548 | (2) |
|
|
550 | (1) |
|
|
550 | (1) |
|
Part 6 Class D Amplifiers |
|
|
551 | (50) |
|
28 Class D Audio Amplifiers |
|
|
553 | (12) |
|
28.1 How Class D Amplifiers Work |
|
|
554 | (1) |
|
Analog Class D and Digital Class D |
|
|
555 | (1) |
|
Synchronous and Asynchronous Class D |
|
|
555 | (1) |
|
|
555 | (7) |
|
Synchronous Buck Converter |
|
|
557 | (1) |
|
Gate Drive Requirements and Power Dissipation |
|
|
558 | (1) |
|
|
558 | (2) |
|
|
560 | (1) |
|
|
560 | (1) |
|
|
561 | (1) |
|
|
561 | (1) |
|
28.3 Class D Output Stages |
|
|
562 | (2) |
|
Single-Ended and H-Bridge Output Stages |
|
|
562 | (1) |
|
|
562 | (1) |
|
|
563 | (1) |
|
|
563 | (1) |
|
Adaptive Dead Time Control |
|
|
564 | (1) |
|
|
564 | (1) |
|
|
564 | (1) |
|
|
565 | (18) |
|
29.1 The Output Filter and EMI |
|
|
565 | (4) |
|
|
567 | (1) |
|
Differing Loudspeaker Impedance |
|
|
567 | (1) |
|
Linear Phase Approximation |
|
|
567 | (1) |
|
Reducing Output Filter Size |
|
|
567 | (1) |
|
Input Filter and Aliasing |
|
|
568 | (1) |
|
|
568 | (1) |
|
|
568 | (1) |
|
29.2 Sources of Distortion |
|
|
569 | (5) |
|
Triangle Reference Linearity and Bandwidth |
|
|
569 | (1) |
|
|
569 | (1) |
|
|
569 | (2) |
|
|
571 | (1) |
|
|
572 | (1) |
|
Extending the PWM Central Region |
|
|
573 | (1) |
|
Asymmetrical Rise/Fall Times |
|
|
573 | (1) |
|
Body Diode Conduction Time |
|
|
573 | (1) |
|
|
573 | (1) |
|
|
574 | (1) |
|
29.4 Power Supply Rejection |
|
|
575 | (1) |
|
|
576 | (1) |
|
Power Supply Feedback to the Triangle Generator |
|
|
576 | (1) |
|
29.5 Power Supplies for Class D Amplifiers |
|
|
576 | (1) |
|
|
576 | (1) |
|
|
577 | (1) |
|
|
577 | (3) |
|
Closing the Loop Before the Output Filter |
|
|
578 | (1) |
|
Closing the Loop Around the Output Filter |
|
|
579 | (1) |
|
29.7 Damping Factor and Load Invariance |
|
|
580 | (1) |
|
|
581 | (1) |
|
|
581 | (2) |
|
30 Alternative Class D Modulators |
|
|
583 | (12) |
|
30.1 Self-Oscillating Loops |
|
|
583 | (4) |
|
Self-Oscillation with Pre-filter Feedback |
|
|
584 | (1) |
|
Self-Oscillation with the Output Filter |
|
|
585 | (1) |
|
Self-Oscillation Using a One-Shot |
|
|
585 | (1) |
|
Synchronized Self-Oscillating Loops |
|
|
586 | (1) |
|
30.2 Sigma-Delta Modulators |
|
|
587 | (6) |
|
|
588 | (1) |
|
High-Speed Class D Sigma-Delta Amplifiers |
|
|
589 | (1) |
|
High Sigma-Delta Modulator Clock Frequencies |
|
|
590 | (1) |
|
Adaptive Transition Density Limiting |
|
|
590 | (1) |
|
|
590 | (1) |
|
Second-Order Sigma-Delta Modulators |
|
|
591 | (1) |
|
Higher-Order Sigma-Delta Modulators |
|
|
592 | (1) |
|
EMI of Sigma-Delta Class D Amplifiers |
|
|
592 | (1) |
|
|
592 | (1) |
|
|
592 | (1) |
|
|
593 | (1) |
|
|
593 | (1) |
|
Digital Sigma-Delta Modulators |
|
|
593 | (1) |
|
|
593 | (1) |
|
|
594 | (1) |
|
31 Class D Measurement, Performance, and Efficiency |
|
|
595 | (6) |
|
|
595 | (2) |
|
31.2 Measuring Class D Amplifiers |
|
|
597 | (2) |
|
|
597 | (1) |
|
Total Harmonic Distortion |
|
|
597 | (1) |
|
|
598 | (1) |
|
|
598 | (1) |
|
|
598 | (1) |
|
|
598 | (1) |
|
|
599 | (1) |
|
31.3 Achievable Performance |
|
|
599 | (1) |
|
|
599 | (1) |
|
|
599 | (1) |
|
|
600 | (1) |
Index |
|
601 | |