Muutke küpsiste eelistusi

Designing Illumination Optics [Pehme köide]

  • Formaat: Paperback / softback, 150 pages, kaal: 267 g
  • Sari: Tutorial Texts
  • Ilmumisaeg: 30-May-2022
  • Kirjastus: SPIE Press
  • ISBN-10: 1510649352
  • ISBN-13: 9781510649354
Teised raamatud teemal:
  • Formaat: Paperback / softback, 150 pages, kaal: 267 g
  • Sari: Tutorial Texts
  • Ilmumisaeg: 30-May-2022
  • Kirjastus: SPIE Press
  • ISBN-10: 1510649352
  • ISBN-13: 9781510649354
Teised raamatud teemal:
This tutorial is written to help engineers tasked with designing illumination optics determine where to start, which methods and approaches to use, and how to gain insight into the nature of the problem at hand. Good illumination design uses patterns from both non-imaging optics (such as compound parabolic concentrators) and imaging optics (such as lenses), often in combination, to produce optimal solutions. These chapters provide readers with a toolbox consisting of a coherent theoretical background, a description of important optical elements and their function, and several design methods. Typical examples are described to illustrate how an experienced optical designer approaches problems, plays with concepts, and arrives at solutions.
1 Introduction
1(6)
1.1 Motivation
1(2)
1.2 One Goal, Many Approaches
3(4)
2 Preparation
7(36)
2.1 Modeling, Simulation, and Design
8(1)
2.2 Phase Space and Etendue
9(3)
2.3 Edge-Ray Principle
12(1)
2.4 Radiometry
13(3)
2.5 Conservation Laws
16(4)
2.6 Helpful Diagrams
20(12)
2.6.1 Light distribution curve
20(1)
2.6.2 Phase-space diagrams
21(2)
2.6.3 Luminance diagrams
23(5)
2.6.4 Rayfile analysis---characteristic curve
28(3)
2.6.5 Skewness diagrams
31(1)
2.7 Example Problems
32(11)
2.7.1 Museum spotlight
32(4)
2.7.2 Reflectorized arc lamp
36(2)
2.7.3 LED searchlight
38(3)
2.7.4 LED to circular light guide
41(2)
3 Illumination Design Process
43(18)
3.1 Task Types
43(1)
3.2 Source Aspects
44(8)
3.2.1 Predefined source
44(3)
3.2.2 Source selection
47(4)
3.2.3 Source modeling
51(1)
3.3 Target or Receiver Aspects
52(4)
3.3.1 Standard target
52(1)
3.3.2 Target shape
53(1)
3.3.3 Prescribed illuminance and intensity distributions
54(1)
3.3.4 Target apodization
55(1)
3.3.5 Virtual target
56(1)
3.3.6 Variable target
56(1)
3.4 Initial Design Considerations
56(2)
3.5 Conceptual Design
58(3)
4 Illumination Design Methods
61(44)
4.1 Taxonomy by Task or by Vendue
61(4)
4.2 Point-Source Methods
65(6)
4.2.1 Stigmatic designs
65(2)
4.2.2 Stigmatic imaging with two or more reflections or refractions
67(2)
4.2.3 Point source to prescribed illuminance or intensity distribution: freeform tailoring
69(2)
4.3 Edge-Ray Methods
71(7)
4.3.1 String methods in 2D
72(2)
4.3.2 Flow lines in 2D
74(1)
4.3.3 Other revolved curves
75(1)
4.3.4 Simultaneous multiple surfaces
76(2)
4.4 Design Methods for Extended Sources
78(2)
4.4.1 Conic sections used with extended sources
78(1)
4.4.2 Tailored solutions used with extended sources
79(1)
4.5 Phase-Space Transformation Techniques
80(5)
4.5.1 Etendue modification
81(1)
4.5.2 Source combination
82(2)
4.5.3 Light recycling
84(1)
4.6 Imaging Optics and Illumination
85(7)
4.6.1 Imaging merit function for illumination
87(1)
4.6.2 Pupils
88(1)
4.6.3 Critical and Kohler illumination
88(1)
4.6.4 Kohler illumination as an imaging design method
89(1)
4.6.5 Illumination techniques in imaging optics
90(1)
4.6.6 Do aberrations increase etendue?
91(1)
4.7 Optimization in Illumination Design
92(7)
4.7.1 Motivation
92(1)
4.7.2 Introduction
92(1)
4.7.3 Illumination merit function
93(1)
4.7.4 Merit function evaluation
94(2)
4.7.5 Algorithms
96(2)
4.7.6 Parametrization
98(1)
4.7.7 Concluding example
98(1)
4.8 Tolerancing
99(6)
4.8.1 Introduction
101(1)
4.8.2 Types of tolerances
101(2)
4.8.3 Source tolerances
103(1)
4.8.4 Tolerancing procedures
103(2)
5 Design Patterns: Building Blocks for Illumination Systems
105(4)
5.1 Illumination Systems
105(1)
5.2 Collimation
106(1)
5.3 Beam Shaping
107(1)
5.4 Beam-Delivery Optics
108(1)
6 Summary
109(2)
Acknowledgments 111(2)
References 113(18)
Index 131