Preface |
|
xv | |
Acknowledgments |
|
xxi | |
|
|
1 | (16) |
|
1.1 Knowledge and Representation |
|
|
3 | (2) |
|
1.2 Embodied Cognitive Systems |
|
|
5 | (1) |
|
1.3 Developmental Robotics 5 Example: Learning to Walk: A Developmental Conspiracy |
|
|
6 | (2) |
|
1.4 Frontiers in Robotics |
|
|
8 | (2) |
|
1.5 Organization of the Book |
|
|
10 | (2) |
|
|
12 | (5) |
|
|
|
|
17 | (30) |
|
|
17 | (7) |
|
2.1.1 The Contractile Proteins |
|
|
18 | (1) |
|
2.1.2 The Sliding Filament Model |
|
|
18 | (3) |
|
2.1.3 Active and Passive Muscle Dynamics |
|
|
21 | (3) |
|
|
24 | (19) |
|
2.2.1 Permanent Magnet DC Electric Motors |
|
|
24 | (7) |
|
Example: Torque-Speed Calculation |
|
|
31 | (4) |
|
2.2.2 Hydraulic Actuators |
|
|
35 | (2) |
|
2.2.3 Pneumatic Actuators |
|
|
37 | (3) |
|
2.2.4 Emerging Actuator Technologies |
|
|
40 | (3) |
|
|
43 | (4) |
|
|
47 | (32) |
|
3.1 The Closed-Loop Spinal Stretch Reflex |
|
|
48 | (3) |
|
|
48 | (1) |
|
|
49 | (2) |
|
3.2 The Canonical Spring-Mass-Damper |
|
|
51 | (7) |
|
3.2.1 Equation of Motion: The Harmonic Oscillator |
|
|
53 | (1) |
|
3.2.2 Stability: Lyapunov's Direct Method |
|
|
54 | (2) |
|
Example: Stability Analysis for the Spring-Mass-Damper |
|
|
56 | (2) |
|
3.3 Proportional-Derivative Feedback Control |
|
|
58 | (12) |
|
3.3.1 A Primer for Laplace Transforms |
|
|
60 | (1) |
|
3.3.2 Stability in the Time-Domain |
|
|
61 | (1) |
|
3.3.3 The Transfer Function, SISO Filters, and the Time-Domain Response |
|
|
61 | (2) |
|
Example: Closed-Loop Oculomotor Transfer Function |
|
|
63 | (2) |
|
3.3.4 The Performance of Proportional-Derivative Controllers |
|
|
65 | (2) |
|
Example: Controlling Eye Movements |
|
|
67 | (3) |
|
|
70 | (6) |
|
Part I Summary: Muscles, Motors, and Control |
|
|
76 | (3) |
|
II STRUCTURE IN KINODYNAMIC SYSTEMS |
|
|
|
|
79 | (40) |
|
|
79 | (1) |
|
|
80 | (4) |
|
Example: Kinematic Description of Roger-the-Crab |
|
|
81 | (3) |
|
4.3 Homogeneous Transforms |
|
|
84 | (4) |
|
4.3.1 Translational Components |
|
|
84 | (1) |
|
4.3.2 Rotational Components |
|
|
85 | (2) |
|
4.3.3 Inverting the Homogeneous Transform |
|
|
87 | (1) |
|
4.4 Manipulator Kinematics |
|
|
88 | (7) |
|
|
88 | (1) |
|
Example: Forward Kinematics of the Planar 2R Manipulator |
|
|
88 | (3) |
|
|
91 | (1) |
|
Example: Geometric Inverse Kinematic Solution for the Planar 2R Manipulator |
|
|
92 | (3) |
|
4.5 Kinematics of Stereo Reconstruction |
|
|
95 | (3) |
|
4.5.1 Pinhole Camera: Projective Geometry |
|
|
95 | (1) |
|
4.5.2 Binocular Localization: Forward Kinematics |
|
|
96 | (1) |
|
Example: Stereo Localization in the Plane |
|
|
96 | (2) |
|
4.6 Hand-Eye Kinematic Transformations |
|
|
98 | (3) |
|
4.7 Kinematic Conditioning |
|
|
101 | (8) |
|
|
101 | (1) |
|
4.7.2 The Manipulator Jacobian |
|
|
101 | (1) |
|
Example: First-Order Velocity Control for the Planar 2R Manipulator |
|
|
102 | (4) |
|
Example: Velocity and Force Ellipsoids for Roger |
|
|
106 | (1) |
|
4.7.3 Stereo Localizability |
|
|
107 | (1) |
|
Example: Roger's Oculomotor Jacobian and /Stereo Localizability |
|
|
107 | (2) |
|
|
109 | (3) |
|
Example: Self-Motion Manifold |
|
|
110 | (2) |
|
|
112 | (7) |
|
5 Hands and Kinematic Grasp Analysis |
|
|
119 | (28) |
|
|
119 | (3) |
|
5.2 Kinematic Innovations in Robot Hands |
|
|
122 | (7) |
|
5.3 Mathematical Description of Multiple Contact Systems |
|
|
129 | (13) |
|
|
129 | (1) |
|
Example: Twist Constraints on Object Mobility in a Planar Grasp |
|
|
129 | (2) |
|
|
131 | (2) |
|
|
133 | (3) |
|
5.3.4 The Generalized Grasp Jacobian |
|
|
136 | (1) |
|
Example: The Two-Contact Grasp Jacobian |
|
|
137 | (2) |
|
5.3.5 Grasp Performance: Form and Force Closure |
|
|
139 | (2) |
|
Example: Solving for Forces in Force Closure Grasps |
|
|
141 | (1) |
|
|
142 | (5) |
|
6 Dynamics of Articulated Systems |
|
|
147 | (22) |
|
|
147 | (1) |
|
|
148 | (5) |
|
Example: Rotational Moment of Inertia |
|
|
150 | (1) |
|
6.2.1 The Parallel Axis Theorem |
|
|
151 | (1) |
|
Example: Translating the Center of Rotation |
|
|
152 | (1) |
|
6.2.2 Rotating the Inertia Tensor |
|
|
153 | (1) |
|
6.3 The Computed Torque Equation |
|
|
153 | (9) |
|
Example: Dynamic Model of Roger's Eye |
|
|
154 | (1) |
|
Example: Dynamic Model of Roger's Arm |
|
|
155 | (2) |
|
|
157 | (1) |
|
6.3.2 Feedforward Control |
|
|
157 | (1) |
|
6.3.3 Analysis: The Dynamic Manipulability Ellipsoid |
|
|
158 | (2) |
|
Example: Gravity and Roger |
|
|
160 | (2) |
|
|
162 | (3) |
|
Part II Summary: The Kinodynamic Affordances of Embodied Systems |
|
|
165 | (4) |
|
III STRUCTURE IN SENSORY FEEDBACK |
|
|
|
7 Stimuli and Sensation: Organs of Visual and Tactile Perception |
|
|
169 | (22) |
|
|
170 | (8) |
|
|
170 | (4) |
|
7.1.2 The Evolution of the Human Eye |
|
|
174 | (4) |
|
7.1.3 Photosensitive Image Planes |
|
|
178 | (1) |
|
|
178 | (9) |
|
7.2.1 Cutaneous Mechanoreceptors |
|
|
179 | (2) |
|
7.2.2 Robotic Tactile Sensing |
|
|
181 | (6) |
|
|
187 | (4) |
|
8 Signals, Signal Processing, and Information |
|
|
191 | (30) |
|
8.1 Sampling Continuous Signals |
|
|
191 | (8) |
|
Example: Spectral Properties of the Human Voice |
|
|
192 | (4) |
|
8.1.1 The Sampling Theorem |
|
|
196 | (3) |
|
8.2 Discrete Convolution Operators |
|
|
199 | (8) |
|
|
201 | (2) |
|
8.2.2 Frei and Chen Signal Decomposition Operators |
|
|
203 | (2) |
|
8.2.3 Noise, Differentiation, and Differential Geometry |
|
|
205 | (1) |
|
|
205 | (2) |
|
8.3 Structure and Causality in Signals |
|
|
207 | (9) |
|
|
208 | (1) |
|
8.3.2 The Gaussian Pyramid: Blobs |
|
|
209 | (3) |
|
8.3.3 Multi-Scale Edges, Ridges, and Corners |
|
|
212 | (4) |
|
|
216 | (2) |
|
Part III Summary: Transducers, Signals, and Perceptual Structure |
|
|
218 | (3) |
|
IV SENSORIMOTOR DEVELOPMENT |
|
|
|
9 Infant Neurodevelopmental Organization |
|
|
221 | (30) |
|
9.1 The Evolution of the Brain |
|
|
221 | (2) |
|
9.2 Hierarchy in the Neocortex |
|
|
223 | (6) |
|
9.3 Neurodevelopmental Organization |
|
|
229 | (14) |
|
9.3.1 Limbic Reflexes: Visceral, Vegetative, and Behavioral |
|
|
230 | (2) |
|
9.3.2 Spinal - and Brainstem-Mediated Reflexes |
|
|
232 | (4) |
|
|
236 | (2) |
|
|
238 | (2) |
|
9.3.5 Maturational Processes |
|
|
240 | (3) |
|
9.4 Developmental and Functional Chronology in the First Year |
|
|
243 | (3) |
|
9.5 Sensory and Cognitive Milestones |
|
|
246 | (3) |
|
9.5.1 Sensory Performance |
|
|
246 | (2) |
|
9.5.2 Cognitive Development in the Sensorimotor Stage |
|
|
248 | (1) |
|
|
249 | (2) |
|
10 A Computational Framework for Experiments in Developmental Learning |
|
|
251 | (30) |
|
10.1 Parametric Closed-Loop Reflexes |
|
|
252 | (16) |
|
10.1.1 Potential Functions: Φ |
|
|
252 | (3) |
|
10.1.2 Closed-Loop Actions: Φ|στ |
|
|
255 | (1) |
|
10.1.3 A Taxonomy of Parametric Actions |
|
|
256 | (1) |
|
Example: Manipulability Reflex |
|
|
257 | (3) |
|
10.1.4 Co-Articulation: Multi-Objective Control |
|
|
260 | (1) |
|
Example: The Mechanics of Human Finger Movement |
|
|
261 | (3) |
|
|
264 | (1) |
|
Example: Representing Grasp Dynamics |
|
|
265 | (3) |
|
10.2 A Multimodal Landscape of Attractors |
|
|
268 | (10) |
|
Example: Multi-Objective Visual Inspection Task |
|
|
270 | (3) |
|
10.2.1 Reinforcement Learning in a Landscape of Attractors |
|
|
273 | (3) |
|
|
276 | (2) |
|
|
278 | (3) |
|
11 Case Study: Learning to Walk |
|
|
281 | (18) |
|
|
281 | (2) |
|
11.2 Controllers and Control Combinatorics |
|
|
283 | (3) |
|
11.3 Locomotion Controllers |
|
|
286 | (3) |
|
11.3.1 Aggregate State Representation |
|
|
287 | (1) |
|
Example: Logical Organization of Locomotor Skills |
|
|
288 | (1) |
|
11.4 Learning the ROTATE Skill |
|
|
289 | (1) |
|
|
290 | (2) |
|
11.6 Hierarchical walk and NAVIGATE Skills |
|
|
292 | (2) |
|
11.7 Developmental Performance: Hierarchical Gross Motor Skills |
|
|
294 | (4) |
|
Part IV Summary: Foundations for Hierarchical Skills |
|
|
298 | (1) |
|
Appendix A Tools for Linear Analysis |
|
|
299 | (32) |
|
|
299 | (3) |
|
|
302 | (1) |
|
|
303 | (1) |
|
|
304 | (1) |
|
|
305 | (1) |
|
|
305 | (2) |
|
Example: Plotting the Quadratic Form |
|
|
306 | (1) |
|
A.7 Singular Value Decomposition |
|
|
307 | (2) |
|
A.8 Scalar Condition Metrics for Linear Transforms |
|
|
309 | (3) |
|
A.8.1 Minimum Singular Value |
|
|
309 | (1) |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
310 | (1) |
|
Example: Scalar Conditioning Metrics Applied to Roger's Arm |
|
|
311 | (1) |
|
|
312 | (3) |
|
A.10 Linear Integral Transforms |
|
|
315 | (6) |
|
|
316 | (1) |
|
|
317 | (3) |
|
|
320 | (1) |
|
Example: Laplace Transform of an Exponential Function f(i)=e1 |
|
|
320 | (1) |
|
Example: Laplace Transform of the Unit Step Function f(t) = t ≤ 0 |
|
|
321 | (1) |
|
A.11 Time-Domain Responses for the Harmonic Oscillator |
|
|
321 | (10) |
|
Example: Time-Domain Response of the Spring-Mass-Damper |
|
|
323 | (2) |
|
Example: The Root Locus Diagram for the PD Control System |
|
|
325 | (1) |
|
A.11.1 Frequency-Dependent Amplitude and Phase Response |
|
|
326 | (3) |
|
A.11.2 Stiffness and Impedance |
|
|
329 | (2) |
|
Appendix B The Dynamics of Kinematic Chains |
|
|
331 | (20) |
|
B.1 Deriving the Inertia Tensor |
|
|
331 | (3) |
|
B.2 Inertial Coordinate Frames |
|
|
334 | (1) |
|
B.3 Rotating Coordinate Systems |
|
|
334 | (3) |
|
B.4 Newton-Euler Iterations |
|
|
337 | (12) |
|
B.4.1 Propagating Velocities in Open Kinematic Chains |
|
|
338 | (2) |
|
B.4.2 Propagating Force in Open Kinematic Chains |
|
|
340 | (2) |
|
B.4.3 The Outward-Inward Iteration |
|
|
342 | (2) |
|
Example: The Computed Torque Equation for the Planar 2R Manipulator |
|
|
344 | (5) |
|
|
349 | (2) |
|
Appendix C Numerical Methods for Solving Laplace's Equation |
|
|
351 | (6) |
|
Example: A Collision-Free Arm Controller for Roger |
|
|
353 | (4) |
Bibliography |
|
357 | (14) |
Index |
|
371 | |