Muutke küpsiste eelistusi

Devices for Mobility and Manipulation for People with Reduced Abilities [Kõva köide]

(RMIT University, Melbourne, Australia), (RMIT University, Melbourne, Australia), (Federal University of Espirito Santo, Vitoria, Brazil)
  • Formaat: Hardback, 230 pages, kõrgus x laius: 234x156 mm, kaal: 590 g, 8 Tables, black and white; 16 Illustrations, color; 104 Illustrations, black and white
  • Sari: Rehabilitation Science in Practice Series
  • Ilmumisaeg: 05-May-2014
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1466586451
  • ISBN-13: 9781466586451
Teised raamatud teemal:
  • Formaat: Hardback, 230 pages, kõrgus x laius: 234x156 mm, kaal: 590 g, 8 Tables, black and white; 16 Illustrations, color; 104 Illustrations, black and white
  • Sari: Rehabilitation Science in Practice Series
  • Ilmumisaeg: 05-May-2014
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1466586451
  • ISBN-13: 9781466586451
Teised raamatud teemal:
The development and application of assistive technology can help those with reduced abilities improve their quality of life and reduce their dependence on others. Written in laymans terms, Devices for Mobility and Manipulation for People with Reduced Abilities provides research and information on assistive technologies for non-technical people. While it highlights various mobility and manipulative technologies, with the exception of specific examples within the text, it keeps technical terminology, equations, and software details to a minimum. It presents technical material in a digestible way for people with reduced abilities as well as for their caregivers.

Each chapter covers a specific technology, and starts with a general introduction of that technology, followed by the technical details and an assessment from the users viewpoint. This includes the user benefits and suitability, cost, reliability, and required infrastructure. The chapter also provides illustrations or photographs of the devices, and identifies shortcomings, current research related to the technology, and possible development opportunities. Each chapter provides the range of specifications for the equipment and includes a list of manufacturers.





Discusses user advantages and conditions Examines technologies for robotic wheelchairs and prostheses Helps a clinician or user understand the different devices that support people with disabilities

This book provides clinicians, users, and engineers with the details of different technologies, and also includes a guide to the technology that underpins each of these devices, making it easier for people to understand the devices. References are also included for scientists, designers, and other tech-savvy professionals interested in further information.
List of Tables
vii
List of Figures
ix
Foreword xv
1 Introduction
1(6)
Teodiano Freire Bastos-Filho
Dinesh Kant Kumar
2 Wheelchairs
7(8)
Teodiano Freire Bastos-Filho
Dinesh Kant Kumar
3 Smart Wheelchairs
15(26)
Andre Ferreira
Sandra Muller
Wanderley Celeste
Daniel Cavalieri
Alessandro Benevides
Patrick Filgueira
Paulo Amaral
Mario Sarcinelli-Filho
Teodiano Freire Bastos-Filho
Elisa Perez
Carlos Soria
4 Navigation System for UFES's Robotic Wheelchair
41(56)
Fernando Cheein
Celso De La Cruz
Edgard Guimaraes
Teodiano Freire Bastos-Filho
Ricardo Carelli
5 Assisted Route Planner for a Robotic Wheelchair
97(26)
Mariana Rampinelli Fernandes
Paulo Amaral
Raquel Frizera Vassallo
Teodiano Freire Bastos-Filho
Daniel Pizarro
Juan Carlos Garcia
Manuel Mazo
6 Walkers
123(24)
Anselmo Frizera-Neto
Arlindo Elias-Neto
Carlos Cifuentes
Carlos Valadao
Valmir Schneider-Junior
Camilo Diaz
Teodiano Freire Bastos-Filho
Ricardo Carelli
7 Manipulation Technologies for Developing Cognitive Skills
147(16)
Carlos Valadao
Jhon Sarmiento-Vela
Christiane Goulart
Javier Castillo
Teodiano Freire Bastos-Filho
8 Upper-Limb Prosthetic Devices
163(16)
Sridhar Poosapadi Arjunan
Dinesh Kant Kumar
Leandro Bueno
John Villarejo-Mayor
Teodiano Freire Bastos-Filho
Appendix Countries with Disability Programs 179(18)
Dinesh Kant Kumar
Teodiano Freire Bastos-Filho
Index 197
Teodiano Freire Bastos-Filho received his degree in electrical engineering from the Universidade Federal do Espírito Santo, Vitória, Brazil, in 1987, and his Ph.D. in physical sciences from the Universidad Complutense de Madrid, Madrid, Spain, in 1994. He is with the Department of Electrical Engineering, Universidade Federal do Espírito Santo, Vitória, Brazil, and the Brazilian National Council for Scientific and Technological Development (CNPq). His research interests include signal processing, rehabilitation robotics, and assistive technologies.

Dinesh K Kumar received his PhD from IIT Madras, and his PhD in biomedical engineering from IIT Delhi and AIIMS, Delhi. He is professor and leader of biomedical engineering at RMIT University, Melbourne, Australia. He has published over 330 refereed papers in the field, and his interests include muscle control, affordable diagnostics, and human computer interface. He is an editor of multiple journals, chairs a range of conferences related to biomedical engineering, and in his spare time enjoys walking in nature.

Sridhar Poosapadi Arjunan received his B.Engg degree in electronics and communication from University of Madras, India in 2000; M.Engg degree in communication systems from Madurai Kamaraj University, India in 2002; and his PhD in biomedical signal processing from RMIT University, Australia in 2009. He is currently a post-doctoral research fellow with Biosignals Lab at RMIT University. He is a recipient of RMIT SECE Research Scholarship (2006-08), CASS Australian Early Career Researcher grant (2010), and Australia-India ECR fellowship (2013). His major research interests include biomedical signal processing, rehabilitation study, fractal theory, and human computer interface applications.