Muutke küpsiste eelistusi

Differential Equations, Bifurcations and Chaos [Pehme köide]

  • Formaat: Paperback / softback, 250 pages, kõrgus x laius: 235x155 mm, Approx. 250 p., 1 Paperback / softback
  • Sari: Springer Undergraduate Mathematics Series
  • Ilmumisaeg: 30-Sep-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031995422
  • ISBN-13: 9783031995422
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • See raamat ei ole veel ilmunud. Raamatu kohalejõudmiseks kulub orienteeruvalt 2-4 nädalat peale raamatu väljaandmist.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 250 pages, kõrgus x laius: 235x155 mm, Approx. 250 p., 1 Paperback / softback
  • Sari: Springer Undergraduate Mathematics Series
  • Ilmumisaeg: 30-Sep-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031995422
  • ISBN-13: 9783031995422

This book introduces qualitative methods for understanding differential equations, especially when analytical solutions are not possible. Aimed at second-year undergraduate students in mathematics or science, it assumes prior knowledge of calculus, linear algebra, and curve sketching. The book focuses on phase plane methods for second-order differential equations, supported by earlier sections on analytical techniques and phase lines for first-order equations. The later chapters explore bifurcation theory and chaos. Emphasizing application over theory, the book includes diagrams, worked examples, and exercises, with minimal use of formal proofs.

Chapter
1. Introduction.
Chapter
2. Analytical Methods for Differential
Equations.
Chapter
3. Qualitative Methods for First-Order Differential
Equations.
Chapter
4. Second-Order Linear Systems.
Chapter
5. Second-Order
Nonlinear Systems.
Chapter
6. Bifurcations.
Chapter
7. Difference
Equations.
Chapter
8. Chaos.
Chapter
9. Solutions to Odd-Numbered Exercises.
Paul C. Matthews was on the faculty of the University of Nottingham for more than two decades. A specialist of dynamical systems and their numerical analysis, he is the author of the bestselling textbook Vector Calculus (Springer, 1998).