List of Figures and Tables |
|
xiii | |
Preface |
|
xvii | |
Acknowledgments |
|
xxi | |
How to Read This Book |
|
xxiii | |
I Spacetime Geometry |
|
1 | (64) |
|
|
3 | (8) |
|
|
3 | (3) |
|
|
6 | (1) |
|
1.3 Hyperbola Trigonometry |
|
|
7 | (1) |
|
1.4 The Geometry of Special Relativity |
|
|
8 | (3) |
|
|
11 | (8) |
|
2.1 Position and Velocity |
|
|
11 | (2) |
|
|
13 | (1) |
|
|
14 | (1) |
|
2.4 Example: Polar Coordinates |
|
|
15 | (1) |
|
|
16 | (3) |
|
|
19 | (22) |
|
3.1 The Schwarzschild Metric |
|
|
19 | (1) |
|
3.2 Properties of the Schwarzschild Geometry |
|
|
20 | (1) |
|
3.3 Schwarzschild Geodesics |
|
|
21 | (2) |
|
|
23 | (2) |
|
|
25 | (4) |
|
|
29 | (2) |
|
|
31 | (3) |
|
|
34 | (1) |
|
|
35 | (4) |
|
3.10 Schwarzschild Observers |
|
|
39 | (2) |
|
|
41 | (8) |
|
|
41 | (1) |
|
4.2 Properties of Rindler Geometry |
|
|
41 | (2) |
|
|
43 | (2) |
|
4.4 Extending Rindler Geometry |
|
|
45 | (4) |
|
|
49 | (16) |
|
5.1 Extending Schwarzschild Geometry |
|
|
49 | (2) |
|
|
51 | (4) |
|
|
55 | (3) |
|
|
58 | (1) |
|
|
59 | (2) |
|
|
61 | (4) |
II General Relativity |
|
65 | (62) |
|
|
67 | (12) |
|
6.1 Differential Forms in a Nutshell |
|
|
67 | (5) |
|
|
72 | (1) |
|
6.3 The Physics of General Relativity |
|
|
73 | (2) |
|
|
75 | (4) |
|
|
79 | (8) |
|
|
79 | (1) |
|
|
80 | (3) |
|
|
83 | (1) |
|
7.4 Schwarzschild Connection |
|
|
84 | (1) |
|
7.5 Tidal Forces Revisited |
|
|
85 | (2) |
|
|
87 | (14) |
|
|
87 | (2) |
|
|
89 | (2) |
|
8.3 First Guess at Einstein's Equation |
|
|
91 | (2) |
|
|
93 | (2) |
|
|
95 | (2) |
|
|
97 | (1) |
|
8.7 The Cosmological Constant |
|
|
98 | (1) |
|
|
99 | (2) |
|
|
101 | (18) |
|
|
101 | (1) |
|
9.2 The Cosmological Principle |
|
|
101 | (2) |
|
|
103 | (2) |
|
9.4 Robertson—Walker Metrics |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
108 | (1) |
|
9.7 Friedmann Vacuum Cosmologies |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
111 | (2) |
|
9.10 Cosmological Redshift |
|
|
113 | (2) |
|
|
115 | (4) |
|
10 Solar System Applications |
|
|
119 | (8) |
|
|
119 | (3) |
|
10.2 Perihelion Shift of Mercury |
|
|
122 | (3) |
|
|
125 | (2) |
III Differential Forms |
|
127 | (128) |
|
|
129 | (6) |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
131 | (1) |
|
11.4 Multiplying Differentials |
|
|
132 | (3) |
|
12 Vector Calculus Revisited |
|
|
135 | (8) |
|
12.1 A Review of Vector Calculus |
|
|
135 | (3) |
|
12.2 Differential Forms in Three Dimensions |
|
|
138 | (1) |
|
12.3 Multiplication of Differential Forms |
|
|
139 | (1) |
|
12.4 Relationships between Differential Forms |
|
|
140 | (1) |
|
12.5 Differentiation of Differential Forms |
|
|
141 | (2) |
|
13 The Algebra of Differential Forms |
|
|
143 | (14) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (1) |
|
13.4 Linear Maps and Determinants |
|
|
146 | (1) |
|
|
147 | (2) |
|
|
149 | (1) |
|
13.7 Products of Differential Forms |
|
|
149 | (1) |
|
13.8 Pictures of Differential Forms |
|
|
150 | (4) |
|
|
154 | (1) |
|
|
155 | (1) |
|
13.11 Polar Coordinates II |
|
|
156 | (1) |
|
|
157 | (18) |
|
14.1 Bases for Differential Forms |
|
|
157 | (1) |
|
|
157 | (2) |
|
|
159 | (1) |
|
14.4 Inner Products of Higher-Rank Forms |
|
|
159 | (2) |
|
14.5 The Schwarz Inequality |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
162 | (2) |
|
14.8 Hodge Dual in Minkowski 2-space |
|
|
164 | (1) |
|
14.9 Hodge Dual in Euclidean 2-space |
|
|
164 | (1) |
|
14.10 Hodge Dual in Polar Coordinates |
|
|
165 | (1) |
|
14.11 Dot and Cross Product Revisited |
|
|
166 | (1) |
|
14.12 Pseudovectors and Pseudoscalars |
|
|
167 | (1) |
|
|
167 | (1) |
|
14.14 Technical Note on the Hodge Dual |
|
|
168 | (2) |
|
14.15 Application: Decomposable Forms |
|
|
170 | (1) |
|
|
171 | (4) |
|
15 Differentiation of Differential Forms |
|
|
175 | (16) |
|
|
175 | (1) |
|
15.2 Exterior Differentiation |
|
|
175 | (1) |
|
|
176 | (1) |
|
15.4 Laplacian in Polar Coordinates |
|
|
177 | (1) |
|
15.5 Properties of Exterior Differentiation |
|
|
178 | (2) |
|
|
180 | (1) |
|
15.7 Maxwell's Equations I |
|
|
181 | (1) |
|
15.8 Maxwell's Equations II |
|
|
181 | (1) |
|
15.9 Maxwell's Equations III |
|
|
182 | (2) |
|
15.10 Orthogonal Coordinates |
|
|
184 | (1) |
|
15.11 Div, Grad, Curl in Orthogonal Coordinates |
|
|
185 | (2) |
|
15.12 Uniqueness of Exterior Differentiation |
|
|
187 | (1) |
|
|
188 | (3) |
|
16 Integration of Differential Forms |
|
|
191 | (12) |
|
16.1 Vectors and Differential Forms |
|
|
191 | (1) |
|
16.2 Line and Surface Integrals |
|
|
192 | (2) |
|
16.3 Integrands Revisited |
|
|
194 | (1) |
|
|
194 | (2) |
|
|
196 | (2) |
|
16.6 Integration by Parts |
|
|
198 | (1) |
|
16.7 Corollaries of Stokes' Theorem |
|
|
199 | (1) |
|
|
200 | (3) |
|
|
203 | (12) |
|
17.1 Polar Coordinates II |
|
|
203 | (2) |
|
17.2 Differential Forms That Are Also Vector Fields |
|
|
205 | (1) |
|
17.3 Exterior Derivatives of Vector Fields |
|
|
205 | (1) |
|
17.4 Properties of Differentiation |
|
|
206 | (1) |
|
|
206 | (1) |
|
17.6 The Levi-Civita Connection |
|
|
207 | (1) |
|
17.7 Polar Coordinates III |
|
|
208 | (1) |
|
17.8 Uniqueness of the Levi-Civita Connection |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
212 | (3) |
|
|
215 | (20) |
|
|
215 | (1) |
|
|
216 | (1) |
|
18.3 Examples in Three Dimensions |
|
|
217 | (2) |
|
|
219 | (2) |
|
18.5 Curvature in Three Dimensions |
|
|
221 | (1) |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
224 | (2) |
|
|
226 | (2) |
|
18.10 The Gauss—Bonnet Theorem |
|
|
228 | (3) |
|
|
231 | (3) |
|
|
234 | (1) |
|
|
235 | (10) |
|
|
235 | (1) |
|
19.2 Geodesics in Three Dimensions |
|
|
236 | (1) |
|
19.3 Examples of Geodesics |
|
|
237 | (1) |
|
19.4 Solving the Geodesic Equation |
|
|
238 | (2) |
|
19.5 Geodesics in Polar Coordinates |
|
|
240 | (1) |
|
19.6 Geodesics on the Sphere |
|
|
241 | (4) |
|
|
245 | (10) |
|
20.1 The Equivalence Problem |
|
|
245 | (2) |
|
|
247 | (2) |
|
|
249 | (1) |
|
|
250 | (2) |
|
20.5 Integration on the Sphere |
|
|
252 | (3) |
A Detailed Calculations |
|
255 | (22) |
|
A.1 Coordinate Symmetries |
|
|
255 | (2) |
|
A.2 Geodesic Deviation: Details |
|
|
257 | (2) |
|
A.3 Schwarzschild Curvature |
|
|
259 | (2) |
|
|
261 | (3) |
|
A.5 Components of the Einstein Tensor |
|
|
264 | (1) |
|
A.6 Divergence of the Einstein Tensor |
|
|
265 | (2) |
|
A.7 Divergence of the Metric in Two Dimensions |
|
|
267 | (1) |
|
A.8 Divergence of the Metric |
|
|
268 | (1) |
|
A.9 Robertson—Walker Curvature |
|
|
269 | (2) |
|
|
271 | (3) |
|
A.11 The Stress Tensor for a Point Charge |
|
|
274 | (3) |
B Tensor Notation |
|
277 | (4) |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
279 | (2) |
Annotated Bibliography |
|
281 | (4) |
References |
|
285 | (2) |
Index |
|
287 | |