Muutke küpsiste eelistusi

Differential Geometry and Analysis on CR Manifolds 2006 ed. [Kõva köide]

  • Formaat: Hardback, 488 pages, kõrgus x laius: 235x156 mm, kaal: 1940 g, XVI, 488 p., 1 Hardback
  • Sari: Progress in Mathematics 246
  • Ilmumisaeg: 17-Mar-2006
  • Kirjastus: Birkhauser Boston Inc
  • ISBN-10: 0817643885
  • ISBN-13: 9780817643881
Teised raamatud teemal:
  • Kõva köide
  • Hind: 169,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 198,99 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 488 pages, kõrgus x laius: 235x156 mm, kaal: 1940 g, XVI, 488 p., 1 Hardback
  • Sari: Progress in Mathematics 246
  • Ilmumisaeg: 17-Mar-2006
  • Kirjastus: Birkhauser Boston Inc
  • ISBN-10: 0817643885
  • ISBN-13: 9780817643881
Teised raamatud teemal:
This monograph provides a unified presentation of several differential geometric aspects in the theory of CR manifolds and tangential Cauchy-Riemann equations. It presents the major differential geometric acheivements in the theory of CR manifolds, such as the Tanaka-Webster connection, Fefferman's metric, pseudo-Einstein structures and the Lee conjecture, CR immersions, subelliptic harmonic maps as a local manifestation of pseudoharmonic maps from a CR manifold, Yang-Mills fields on CR manifolds, to name a few. It also aims at explaining how certain results from analysis are employed in CR geometry.

Presents many major differential geometric acheivements in the theory of CR manifolds for the first time in book form

Explains how certain results from analysis are employed in CR geometry

Many examples and explicitly worked-out proofs of main geometric results in the first section of the book making it suitable as a graduate main course or seminar textbook

Provides unproved statements and comments inspiring further study



Recent years have seen a concerted effort to understand the differential geometric side of the study of CR manifolds. This monograph provides a unified presentation of several differential geometric aspects in the theory of CR manifolds and tangential Cauchy-Riemann equations. It contains many examples, explicitly worked-out geometric results, and stimulating unproved statements and comments referring to the most recent aspects of the theory.

Arvustused

In fact, it will be invaluable for people working on the differential geometry of CR manifolds. Thomas Garity, MathSciNet

CR Manifolds.- The Fefferman Metric.- The CR Yamabe Problem.- Pseudoharmonic Maps.- Pseudo-Einsteinian Manifolds.- Pseudo-Hermitian Immersions.- Quasiconformal Mappings.- Yang-Mills Fields on CR Manifolds.- Spectral Geometry.