Muutke küpsiste eelistusi

Digital Signal Processing in Power Electronics Control Circuits 2013 ed. [Kõva köide]

  • Formaat: Hardback, 265 pages, kõrgus x laius: 235x155 mm, kaal: 600 g, 24 Tables, black and white; XX, 265 p., 1 Hardback
  • Sari: Power Systems
  • Ilmumisaeg: 18-Jul-2013
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1447152662
  • ISBN-13: 9781447152668
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 265 pages, kõrgus x laius: 235x155 mm, kaal: 600 g, 24 Tables, black and white; XX, 265 p., 1 Hardback
  • Sari: Power Systems
  • Ilmumisaeg: 18-Jul-2013
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1447152662
  • ISBN-13: 9781447152668
Many digital control circuits in current literature are described using analog transmittance. This may not always be acceptable, especially if the sampling frequency and power transistor switching frequencies are close to the band of interest. Therefore, a digital circuit is considered as a digital controller rather than an analog circuit. This helps to avoid errors and instability in high frequency components. Digital Signal Processing in Power Electronics Control Circuits covers problems concerning the design and realization of digital control algorithms for power electronics circuits using digital signal processing (DSP) methods. This book bridges the gap between power electronics and DSP. The following realizations of digital control circuits are considered: digital signal processors, microprocessors, microcontrollers, programmable digital circuits. Discussed in this book is signal processing, starting from analog signal acquisition, through its conversion to digital form, methods of its filtration and separation, and ending with pulse control of output power transistors. The book is focused on two applications for the considered methods of digital signal processing: an active power filter and a digital class D power amplifier.The major benefit to readers is the acquisition of specific knowledge concerning discussions on the processing of signals from voltage or current sensors using a digital signal processor and to the signals controlling the output inverter transistors. Included are some Matlab examples for illustration of the considered problems.

This book discusses problems concerning the design and realization of digital control algorithms for power electronics circuits using digital signal processing (DSP) methods. It includes Matlab examples for illustration of considered problems.
1 Introduction
1(22)
1.1 Power Electronics Systems
1(2)
1.2 Digital Control Circuits for Power Electronics Systems
3(9)
1.2.1 Analog Versus Digital Control Circuit
4(1)
1.2.2 Causal and Noncausal Circuits
5(1)
1.2.3 LTI Discrete-Time Circuits
6(1)
1.2.4 Digital Filters
7(2)
1.2.5 Hard Real-Time Control Systems
9(2)
1.2.6 Sampling Rate
11(1)
1.2.7 Simultaneous Sampling
11(1)
1.2.8 Number of Bits
11(1)
1.3 Multirate Control Circuits
12(1)
1.4 Active Power Filters
13(3)
1.5 Digital Class D Power Amplifiers
16(1)
1.6 Symbols of Variables
17(1)
1.7 What is in This Book
18(5)
References
19(4)
2 Analog Signals Conditioning and Discretization
23(50)
2.1 Introduction
23(1)
2.2 Analog Input
23(7)
2.2.1 Galvanic Isolation
23(1)
2.2.2 Common Mode Voltage
24(1)
2.2.3 Isolation Amplifiers
25(5)
2.3 Current Measurements
30(8)
2.3.1 A Resistive Shunt
30(1)
2.3.2 Current Transformers
31(2)
2.3.3 Transformer with Hall Sensor
33(3)
2.3.4 Current Transformer with Magnetic Modulation
36(1)
2.3.5 Current Transducer with Air Coil
36(2)
2.3.6 Comparison of Current Sensing Techniques
38(1)
2.4 Total Harmonic Distortion
38(3)
2.5 Analog Signal Sampling Rate
41(3)
2.6 Signal Quantization
44(2)
2.7 Noise Shaping Technique
46(2)
2.8 Dither
48(2)
2.9 Signal Headroom
50(2)
2.10 Maximum Signal Frequency versus Signal Acquisition Time
52(2)
2.11 Errors in Multichannel System
54(2)
2.12 Amplitude and Phase Errors of Sequential Sampling A/D Conversion
56(1)
2.13 Synchronization of Sampling Process
57(2)
2.14 Sampling Clock Jitter
59(2)
2.15 Effective Number of Bits
61(2)
2.16 A/D Converters Suitable for Power Electronics Control Circuits
63(7)
2.16.1 A/D Converter with Successive Approximation
63(1)
2.16.2 A/D Converter with Delta Sigma Modulator
64(1)
2.16.3 Selected Simultaneous Sampling A/D Converters
65(1)
2.16.4 ADS8364
65(1)
2.16.5 AD7608
66(2)
2.16.6 ADS1278
68(1)
2.16.7 TMS320F28335
69(1)
2.17 Conclusions
70(3)
References
70(3)
3 Selected Methods of Signal Filtration and Separation and Their Implementation
73(72)
3.1 Introduction
73(1)
3.2 Digital Filters
74(8)
3.2.1 Digital Filter Specifications
74(1)
3.2.2 Finite Impulse Response Digital Filters
75(2)
3.2.3 Infinite Impulse Response Digital Filters
77(3)
3.2.4 Designing of Digital IIR Filters
80(2)
3.3 Lattice Wave Digital Filters
82(7)
3.3.1 Comparison of Classical IIR Filter and Lattice Wave Digital Filter
85(1)
3.3.2 Realization of LWDF
86(3)
3.4 Modified Lattice Wave Digital Filters
89(5)
3.4.1 First-Order Sections
89(3)
3.4.2 Second-Order Sections
92(2)
3.5 Linear-Phase IIR Filters
94(6)
3.6 Multirate Circuits
100(8)
3.6.1 Signal Interpolation
101(2)
3.6.2 Signal Decimation
103(3)
3.6.3 Multirate Circuits with Wave Digital Filters
106(1)
3.6.4 Interpolators with Linear-Phase IIR Filters
107(1)
3.7 Digital Filter Banks
108(18)
3.7.1 Strictly Complementary Filter Bank
110(2)
3.7.2 DFT Filter Bank
112(2)
3.7.3 Sliding DFT Algorithm
114(3)
3.7.4 Sliding Goertzel Algorithm
117(1)
3.7.5 Moving DFT Algorithm
117(4)
3.7.6 Wave Digital Lattice Filter Bank
121(5)
3.8 Implementation of Digital Signal Processing Algorithms
126(14)
3.8.1 Basic Features of the DSP
129(7)
3.8.2 Digital Signal Processors: SHARC Family
136(2)
3.8.3 Digital Signal Controller: TMS320F28xx Family
138(1)
3.8.4 Digital Signal Processor: TMS320C6xxx Family
139(1)
3.9 Conclusions
140(5)
References
140(5)
4 Selected Active Power Filter Control Algorithms
145(60)
4.1 Introduction
145(1)
4.2 Control Circuit of Shunt APFs
146(4)
4.2.1 Synchronization
147(3)
4.3 APF Control with First Harmonic Detector
150(10)
4.3.1 Control Circuit with Low-Pass 4-Order Butterworth Filter
150(4)
4.3.2 Control Circuit with Low-Pass 5-Order Butterworth LWDF
154(1)
4.3.3 Control Circuit with Sliding DFT
154(3)
4.3.4 Control Circuit with Sliding Goertzel
157(2)
4.3.5 Control Circuit with Moving DFT
159(1)
4.4 The p - q Theory Control Algorithm for Shunt APF
160(4)
4.5 Shunt APF Classical Control Circuit
164(7)
4.6 Dynamics of Shunt APF
171(5)
4.7 Methods of Reducing APF Dynamic Distortion
176(4)
4.7.1 APF Output Current Ripple Calculation
178(2)
4.8 Predictive Control Algorithm for APF
180(6)
4.8.1 Experimental Results
181(3)
4.8.2 Step Response of APF
184(2)
4.9 Selected Harmonics Separation Methods Suitable for APF
186(2)
4.9.1 Control Circuit with MDFT
188(1)
4.9.2 Control Circuit with IPT Algorithm
188(1)
4.10 Multirate APF
188(13)
4.10.1 Analog Input Circuit
192(3)
4.10.2 Output Inductors
195(2)
4.10.3 APF Simulation Results
197(4)
4.11 Conclusion
201(4)
References
202(3)
5 Digital Signal Processing Circuits for Digital Class D Power Amplifiers
205(54)
5.1 Introduction
205(1)
5.2 Digital Class D Power Amplifier Circuits
206(1)
5.3 Modulators for Digital Class D Power Amplifiers
207(6)
5.3.1 Oversampled Pulse Width Modulator
212(1)
5.4 Basic Topologies of Control Circuits for Digital Class D Power Amplifiers
213(6)
5.4.1 Open Loop Amplifiers
213(2)
5.4.2 Amplifiers with Digital Feedback for Supply Voltage
215(1)
5.4.3 Amplifiers with Analog Feedback for Output Pulses
215(3)
5.4.4 Amplifiers with Digital Feedback
218(1)
5.5 Supply Units for Class D Power Amplifiers
219(2)
5.6 Click Modulation
221(2)
5.7 Interpolators for High Quality Audio Signals
223(6)
5.7.1 Single-Stage Interpolators
224(1)
5.7.2 Multistage Interpolators
225(4)
5.8 Class D Audio Power Amplifiers
229(7)
5.8.1 Digital Crossovers
230(3)
5.8.2 Loudspeaker Measurements
233(3)
5.9 Class D Power Amplifier with Digital Click Modulator
236(12)
5.9.1 Digital Crossovers
238(2)
5.9.2 Realization of Digital Click Modulator
240(5)
5.9.3 Experimental Results
245(3)
5.10 Digital Audio Class D Power Amplifier with TAS5508 DSP
248(5)
5.10.1 TAS5508-5121K8EVM
249(2)
5.10.2 Three-way Digital Crossover
251(2)
5.10.3 Experimental Results
253(1)
5.11 Conclusions
253(6)
References
254(5)
6 Conclusion
259(4)
6.1 Summary of Results
259(2)
6.2 Future Work
261(2)
References
262(1)
Index 263
Krzysztof Sozaski is an Associate Professor in the Electrical Engineering Institute at the University of Zielona Góra, Zielona Góra, Poland. His main research areas are: digital signal processing, digital signal processing in power electronics, realizations of advanced control algorithms using digital signal processors, programming of digital signal processors (DSP), software for microcontrollers and DSP, especially C language, Matlab, Pspice, Psim for simulation, and designing magnetic elements for power electronics.