Muutke küpsiste eelistusi

Digital Signal Processing Using MATLAB® : A Problem Solving Companion 4th edition [Pehme köide]

  • Formaat: Paperback / softback, 672 pages, kõrgus x laius x paksus: 235x187x21 mm, kaal: 983 g
  • Ilmumisaeg: 01-Jan-2016
  • Kirjastus: CENGAGE Learning Custom Publishing
  • ISBN-10: 1305635124
  • ISBN-13: 9781305635128
Teised raamatud teemal:
  • Formaat: Paperback / softback, 672 pages, kõrgus x laius x paksus: 235x187x21 mm, kaal: 983 g
  • Ilmumisaeg: 01-Jan-2016
  • Kirjastus: CENGAGE Learning Custom Publishing
  • ISBN-10: 1305635124
  • ISBN-13: 9781305635128
Teised raamatud teemal:
Help your student learn to maximize MATLAB as a computing tool to explore traditional Digital Signal Processing (DSP) topics, solve problems and gain insights. An extremely valuable supplementary text, DIGITAL SIGNAL PROCESSING USING MATLAB: A PROBLEM SOLVING COMPANION, 4E greatly expands the range and complexity of problems that students can effectively study in your course. Since DSP applications are primarily algorithms implemented on a DSP processor or software, they require a significant amount of programming. Using interactive software, such as MATLAB, makes it possible to place more emphasis on learning new and difficult concepts than on programming algorithms. This engaging supplemental text introduces interesting practical examples and shows students how to explore useful problems. New, optional online chapters introduce advanced topics, such as optimal filters, linear prediction, and adaptive filters, to further prepare your students for graduate-level success.
Preface xi
1 Introduction
1(21)
1.1 Overview of Digital Signal Processing
2(3)
1.2 A Brief Introduction to MATLAB
5(13)
1.3 Applications of Digital Signal Processing
18(2)
1.4 Brief Overview of the Book
20(2)
2 Discrete-Time Signals And Systems
22(37)
2.1 Discrete-Time Signals
22(14)
2.2 Discrete Systems
36(4)
2.3 Convolution
40(7)
2.4 Difference Equations
47(6)
2.5 Problems
53(6)
3 The Discrete-Time Fourier Analysis
59(44)
3.1 The Discrete-Time Fourier Transform (DTFT)
59(8)
3.2 The Properties of the DTFT
67(7)
3.3 The Frequency Domain Representation of LTI Systems
74(6)
3.4 Sampling and Reconstruction of Analog Signals
80(17)
3.5 Problems
97(6)
4 The z-Transform
103(38)
4.1 The Bilateral z-Transform
103(4)
4.2 Important Properties of the z-Transform
107(5)
4.3 Inversion of the z-Transform
112(6)
4.4 System Representation in the z-Domain
118(10)
4.5 Solutions of the Difference Equations
128(6)
4.6 Problems
134(7)
5 The Discrete Fourier Transform
141(71)
5.1 The Discrete Fourier Series
142(7)
5.2 Sampling and Reconstruction in the z-Domain
149(5)
5.3 The Discrete Fourier Transform
154(11)
5.4 Properties of the Discrete Fourier Transform
165(15)
5.5 Linear Convolution Using the DFT
180(7)
5.6 The Fast Fourier Transform
187(13)
5.7 Problems
200(12)
6 Implementation Of Discrete-Time Filters
212(79)
6.1 Basic Elements
213(1)
6.2 IIR Filter Structures
214(14)
6.3 FIR Filter Structures
228(11)
6.4 Overview of Finite-Precision Numerical Effects
239(1)
6.5 Representation of Numbers
240(15)
6.6 The Process of Quantization and Error Characterizations
255(7)
6.7 Quantization of Filter Coefficients
262(15)
6.8 Problems
277(14)
7 Fir Filter Design
291(79)
7.1 Preliminaries
292(3)
7.2 Properties of Linear-Phase FIR Filters
295(14)
7.3 Window Design Technique
309(21)
7.4 Frequency-Sampling Design Technique
330(14)
7.5 Optimal Equiripple Design Technique
344(16)
7.6 Problems
360(10)
8 IIR Filter Design
370(88)
8.1 Some Preliminaries
371(3)
8.2 Some Special Filter Types
374(11)
8.3 Characteristics of Prototype Analog Filters
385(22)
8.4 Analog-to-Digital Filter Transformations
407(20)
8.5 Lowpass Filter Design Using MATLAB
427(5)
8.6 Frequency-Band Transformations
432(13)
8.7 Problems
445(13)
9 Sampling Rate Conversion
458(60)
9.1 Introduction
459(2)
9.2 Decimation by a Factor D
461(9)
9.3 Interpolation by a Factor I
470(7)
9.4 Sampling Rate Conversion by a Rational Factor I/D
477(5)
9.5 FIR Filter Designs for Sampling Rate Conversion
482(18)
9.6 FIR Filter Structures for Sampling Rate Conversion
500(10)
9.7 Problems
510(8)
10 Round-Off Effects In Digital Filters
518(55)
10.1 Analysis of A/D Quantization Noise
518(12)
10.2 Round-Off Effects in IIR Digital Filters
530(27)
10.3 Round-Off Effects in FIR Digital Filters
557(12)
10.4 Problems
569(4)
11 Applications In Adaptive Filtering
573(13)
11.1 LMS Algorithm for Coefficient Adjustment
575(3)
11.2 System Identification or System Modeling
578(1)
11.3 Suppression of Narrowband Interference in a Wideband Signal
579(3)
11.4 Adaptive Line Enhancement
582(1)
11.5 Adaptive Channel Equalization
582(4)
12 Applications In Communications
586(28)
12.1 Pulse-Code Modulation
586(4)
12.2 Differential PCM (DPCM)
590(3)
12.3 Adaptive PCM and DPCM (ADPCM)
593(4)
12.4 Delta Modulation (DM)
597(4)
12.5 Linear Predictive Coding (LPC) of Speech
601(4)
12.6 Dual-Tone Multifrequency (DTMF) Signals
605(4)
12.7 Binary Digital Communications
609(2)
12.8 Spread-Spectrum Communications
611(3)
13 Random Processes*
614(72)
13.1 Random Variable
615(13)
13.2 A Pair of Random Variables
628(14)
13.3 Random Signals
642(8)
13.4 Power Spectral Density
650(8)
13.5 Stationary Random Processes through LTI Systems
658(10)
13.6 Useful Random Processes
668(16)
13.7 Summary and References
684(2)
14 Linear Prediction and Optimum Linear Filters*
686(83)
14.1 Innovations Representation of a Stationary Random Process
687(14)
14.2 Forward and Backward Linear Prediction
701(16)
14.3 Solution of the Normal Equations
717(13)
14.4 Properties of the Linear Prediction-Error Filters
730(4)
14.5 AR Lattice and ARMA Lattice-Ladder Filters
734(9)
14.6 Wiener Filters for Filtering and Prediction
743(23)
14.7 Summary and References
766(3)
15 Adaptive Filters*
769
15.1 Applications of Adaptive Filters
769(46)
15.2 Adaptive Direct-Form FIR Filters
815(34)
15.3 Summary and References
849
Bibliography 1(1)
Index 1