Notational Conventions |
|
ix | |
List of Key Symbols |
|
xi | |
MATLAB Software |
|
xv | |
Preface |
|
xix | |
1 Introduction |
|
1 | (24) |
|
1.1 Historical Perspective |
|
|
3 | (8) |
|
|
11 | (4) |
|
|
15 | (1) |
|
1.4 Issues in Spectral Estimation |
|
|
16 | (4) |
|
|
20 | (1) |
|
|
20 | (5) |
2 Review of Linear Systems and Transform Theory |
|
25 | (28) |
|
|
25 | (1) |
|
|
26 | (1) |
|
2.3 Continuous Linear Systems |
|
|
26 | (2) |
|
2.4 Discrete Linear Systems |
|
|
28 | (2) |
|
2.5 Continuous-Time Fourier Transform |
|
|
30 | (3) |
|
2.6 Sampling and Windowing Operations |
|
|
33 | (3) |
|
2.7 Relating the Continuous and Discrete Transforms |
|
|
36 | (5) |
|
2.8 The Issue of Scaling for Power Determination |
|
|
41 | (1) |
|
2.9 The Issue of Zero Padding |
|
|
42 | (1) |
|
2.10 The Fast Fourier Transform |
|
|
43 | (2) |
|
2.11 Resolution and the Time-Bandwidth Product |
|
|
45 | (3) |
|
2.12 Extra: Source of Complex-Valued Signals |
|
|
48 | (2) |
|
2.13 Extra: Wavenumber Processing with Linear Spatial Arrays |
|
|
50 | (1) |
|
|
50 | (3) |
3 Review of Matrix Algebra |
|
53 | (44) |
|
|
53 | (1) |
|
3.2 Matrix Algebra Basics |
|
|
53 | (4) |
|
3.3 Special Vector and Matrix Structures |
|
|
57 | (5) |
|
|
62 | (3) |
|
3.5 Solution of Linear Equations |
|
|
65 | (8) |
|
3.6 Overdetermined and Underdetermined Linear Equations |
|
|
73 | (3) |
|
3.7 Solution of Overdetermined and Underdetermined Linear Equations |
|
|
76 | (4) |
|
|
80 | (13) |
|
3.9 The Vandermonde Matrix |
|
|
93 | (1) |
|
|
94 | (3) |
4 Review of Random Process Theory |
|
97 | (20) |
|
|
97 | (1) |
|
4.2 Probability and Random Variables |
|
|
97 | (3) |
|
|
100 | (7) |
|
4.4 Substituting Time Averages for Ensemble Averages |
|
|
107 | (4) |
|
|
111 | |
|
4.6 Limit Spectra of Test Data I |
|
|
12 | (100) |
|
4.7 Extra: Bias and Variance of the Sample Spectrum |
|
|
112 | (3) |
|
|
115 | (2) |
5 Classical Spectral Estimation |
|
117 | (38) |
|
|
117 | (1) |
|
|
118 | (4) |
|
|
122 | (8) |
|
5.4 Resolution and the Stability-Time-Bandwidth Product |
|
|
130 | (2) |
|
5.5 Autocorrelation and Cross Correlation Estimation |
|
|
132 | (4) |
|
5.6 Correlogram Method PSD Estimators |
|
|
136 | (4) |
|
5.7 Periodogram PSD Estimators |
|
|
140 | (6) |
|
5.8 Combined Periodogram/Correlogram Estimators |
|
|
146 | (3) |
|
5.9 Application to Sunspot Numbers |
|
|
149 | (3) |
|
|
152 | (1) |
|
|
153 | (2) |
6 Parametric Models of Random Processes |
|
155 | (16) |
|
|
155 | (1) |
|
|
156 | (1) |
|
6.3 AR, MA, and ARMA Random Process Models |
|
|
157 | (4) |
|
6.4 Relationships Among AR, MA, and ARMA Process Parameters |
|
|
161 | (3) |
|
6.5 Relationship of AR, MA, and ARMA Parameters to the Autocorrelation Sequence |
|
|
164 | (3) |
|
6.6 Spectral Factorization |
|
|
167 | (2) |
|
|
169 | (2) |
7 Autoregressive Process and Spectrum Properties |
|
171 | (16) |
|
|
171 | (1) |
|
|
171 | (1) |
|
7.3 Autoregressive Process Properties |
|
|
172 | (8) |
|
7.4 Autoregressive Power Spectral Density Properties |
|
|
180 | (5) |
|
|
185 | (2) |
8 Autoregressive Spectral Estimation: Block Data Algorithms |
|
187 | (48) |
|
|
187 | (1) |
|
|
188 | (3) |
|
8.3 Correlation Function Estimation Method |
|
|
191 | (1) |
|
8.4 Reflection Coefficient Estimation Methods |
|
|
191 | (6) |
|
8.5 Least Squares Linear Prediction Estimation Methods |
|
|
197 | (9) |
|
8.6 Estimator Characteristics |
|
|
206 | (5) |
|
8.7 Model Order Selection |
|
|
211 | (2) |
|
8.8 Autoregressive Processes with Observation Noise |
|
|
213 | (1) |
|
8.9 Application to Sunspot Numbers |
|
|
214 | (2) |
|
8.10 Extra: Covariance Linear Prediction Fast Algorithm |
|
|
216 | (8) |
|
8.11 Extra: Modified Covariance Linear Prediction Fast Algorithm |
|
|
224 | (7) |
|
|
231 | (4) |
9 Autoregressive Spectral Estimation: Sequential Data Algorithms |
|
235 | (20) |
|
|
235 | (1) |
|
|
236 | (1) |
|
9.3 Gradient Adaptive Autoregressive Methods |
|
|
237 | (3) |
|
9.4 Recursive Least Squares (RLS) Autoregressive Methods |
|
|
240 | (6) |
|
9.5 Fast Lattice Autoregressive Methods |
|
|
246 | (1) |
|
9.6 Application to Sunspot Numbers |
|
|
247 | (1) |
|
9.7 Extra: Fast RLS Algorithm for Recursive Linear Prediction |
|
|
248 | (5) |
|
|
253 | (2) |
10 Autoregressive Moving Average Spectral Estimation |
|
255 | (16) |
|
|
255 | (1) |
|
|
256 | (2) |
|
10.3 Moving Average Parameter Estimation |
|
|
258 | (2) |
|
10.4 Separate Autoregressive and Moving Average Parameter Estimation |
|
|
260 | (4) |
|
10.5 Simultaneous Autoregressive and Moving Average Parameter Estimation |
|
|
264 | (1) |
|
10.6 Sequential Approach to ARMA Estimation |
|
|
265 | (1) |
|
10.7 Special ARMA Process for Sinusoids in White Noise |
|
|
266 | (1) |
|
10.8 Application to Sunspot Numbers |
|
|
267 | (1) |
|
|
268 | (3) |
11 Prony's Method |
|
271 | (28) |
|
|
271 | (1) |
|
|
272 | (2) |
|
11.3 Simultaneous Exponential Parameter Estimation |
|
|
274 | (1) |
|
11.4 Original Prony Concept |
|
|
275 | (2) |
|
11.5 Least Squares Prony Method |
|
|
277 | (3) |
|
11.6 Modified Least Squares Prony Method |
|
|
280 | (3) |
|
|
283 | (3) |
|
11.8 Accounting for Known Exponential Components |
|
|
286 | (2) |
|
11.9 Identification of Exponentials in Noise |
|
|
288 | (4) |
|
11.10 Application to Sunspot Numbers |
|
|
292 | (1) |
|
11.11 Extra: Fast Algorithm to Solve Symmetric Covariance Normal Equations |
|
|
293 | (4) |
|
|
297 | (2) |
12 Minimum Variance Spectral Estimation |
|
299 | (10) |
|
|
299 | (1) |
|
|
299 | (2) |
|
12.3 Derivation of the Minimum Variance Spectral Estimator |
|
|
301 | (2) |
|
12.4 Relationship of MV and AR Spectral Estimators |
|
|
303 | (2) |
|
12.5 Implementation of the Minimum Variance Spectral Estimator |
|
|
305 | (2) |
|
12.6 Application to Sunspot Numbers |
|
|
307 | (1) |
|
|
307 | (2) |
13 Eigenanalysis-Based Frequency Estimation |
|
309 | (16) |
|
|
309 | (1) |
|
|
309 | (2) |
|
13.3 Eigenanalysis of Autocorrelation Matrix for Sinusoids in White Noise |
|
|
311 | (3) |
|
13.4 Eigenanalysis of Data Matrix for Exponentials in Noise |
|
|
314 | (2) |
|
13.5 Signal Subspace Frequency Estimators |
|
|
316 | (3) |
|
13.6 Noise Subspace Frequency Estimators |
|
|
319 | (4) |
|
|
323 | (1) |
|
|
323 | (2) |
14 Summary of Spectral Estimators |
|
325 | (6) |
|
|
330 | (1) |
15 Multichannel Spectral Estimation |
|
331 | (38) |
|
|
331 | (1) |
|
|
331 | (1) |
|
15.3 Multichannel Linear Systems Theory |
|
|
332 | (2) |
|
15.4 Multichannel Random Process Theory |
|
|
334 | (3) |
|
15.5 Multichannel Classical Spectral Estimators |
|
|
337 | (3) |
|
15.6 Multichannel ARMA, AR, and MA Processes |
|
|
340 | (3) |
|
15.7 Multichannel Yule-Walker Equations |
|
|
343 | (2) |
|
15.8 Multichannel Levinson Algorithm |
|
|
345 | (3) |
|
15.9 Multichannel Block Toeplitz Matrix Inverse |
|
|
348 | (1) |
|
15.10 Multichannel Autoregressive Spectral Estimation |
|
|
349 | (7) |
|
15.11 Autoregressive Order Selection |
|
|
356 | (1) |
|
15.12 Experimental Comparison of Multichannel Autogressive PSD Estimators |
|
|
356 | (7) |
|
15.13 Multichannel Minimum Variance Spectral Estimation |
|
|
363 | (1) |
|
15.14 Two-Channel Spectral Analysis of Sunspot Numbers and Air Temperature |
|
|
364 | (3) |
|
|
367 | (2) |
16 Two-Dimensional Spectral Estimation |
|
369 | (34) |
|
|
369 | (1) |
|
|
370 | (2) |
|
16.3 Two-Dimensional Linear Systems and Transform Theory |
|
|
372 | (5) |
|
16.4 Two-Dimensional Random Process Theory |
|
|
377 | (3) |
|
16.5 Classical 2-13 Spectral Estimation |
|
|
380 | (3) |
|
16.6 Modified Classical 2-D Spectral Estimators |
|
|
383 | (1) |
|
16.7 Two-Dimensional Autoregressive Spectral Estimation |
|
|
384 | (13) |
|
16.8 Two-Dimensional Maximum Entropy Spectral Estimation |
|
|
397 | (1) |
|
16.9 Two-Dimensional Minimum Variance Spectral Estimation |
|
|
398 | (1) |
|
|
399 | (4) |
Index |
|
403 | |