Muutke küpsiste eelistusi

Digital Terrain Modelling: Development and Applications in a Policy Support Environment 2007 ed. [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 313 pages, kõrgus x laius: 235x155 mm, kaal: 664 g, XVII, 313 p., 1 Hardback
  • Sari: Lecture Notes in Geoinformation and Cartography
  • Ilmumisaeg: 30-Jul-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540367306
  • ISBN-13: 9783540367307
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 313 pages, kõrgus x laius: 235x155 mm, kaal: 664 g, XVII, 313 p., 1 Hardback
  • Sari: Lecture Notes in Geoinformation and Cartography
  • Ilmumisaeg: 30-Jul-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540367306
  • ISBN-13: 9783540367307
This publication is the first book on the development and application of digital terrain modeling for regional planning and policy support. It is a compilation of research results by international research groups at the European Commission's Joint Research Centre, providing scientific support to the development and implementation of EU environmental policy. This practice-oriented book is recommended reading for practising environmental modelers and GIS experts working on regional planning and policy support applications.

This publication is the first book on the development and application of digital terrain modelling for regional planning and policy support. It is a compilation of research results by international research groups at the European Commission's Joint Research Centre, providing scientific support to the development and implementation of EU environmental policy. Applications include the pan-European River and Catchment Database, European Flood Alert System, European Digital Soil Database and alternative solar energy resources, all discussed in a GIS framework in the context of the INfrastructure for SPatial InfoRmation in Europe (INSPIRE). This practice-oriented book is recommended to practicing environmental modellers and GIS experts working on regional planning and policy support applications.
Digital Terrain Analysis in a Gis Environment. Concepts and Development
1(44)
Gyozo Jordan
Introduction
1(1)
Digital Terrain Analysis in a GIS Environment
2(2)
Mathematical Development
4(17)
Vector-scalar Functions: Spatial Curves, Curvature and Surfaces
4(10)
Scalar-vector Functions: Gradient Vector, Slope and Aspect
14(3)
The Link between Surface Geometry and Surface Flow: Gradient and Curvature
17(3)
Vector Analysis and Digital Terrain Modelling: Geometric Characterisation of Topographic Surfaces
20(1)
Numerical Methods
21(17)
Digital Representation of Topographic Surface: Continuity and Smoothness
21(3)
Calculation of Partial Derivatives for Gradient and Curvature Estimation
24(4)
Which Gradient Calculation Method Should be Used?
28(5)
Avoiding Second-order Derivatives: Break Lines and Inflexion Lines
33(2)
Calculation of Singular Points
35(2)
Digital Drainage Analysis: Ridge and Valley Lines
37(1)
Conclusions
38(7)
References
39(6)
From Mathematical Morphology to Morphological Terrain Features
45(22)
Pierre Soille
Introduction
45(1)
First Steps in Mathematical Morphology
46(4)
Erosion and Dilatation
46(1)
Opening and Closing
47(1)
Geodesic Transformations
47(3)
From Topographic Maps to DEMs
50(2)
Plateau Image Generation
51(1)
Interpolation Along Steepest Slope Lines
51(1)
From DEMs to River Networks
52(7)
Spurious Pits and their Suppression
54(3)
Flow Directions
57(2)
Contributing Drainage Areas
59(1)
Dividing Lines
59(3)
Watersheds
62(1)
Crest Lines
62(1)
Concluding Remarks
62(5)
References
63(4)
Optimisation of Interpolation Parameters Using Cross-Validation
67(16)
Jaroslav Hofierka
Tomds Cebecauer
Marcel Suri
Introduction
67(1)
Interpolation by Regularised Spline with Tension
68(2)
The RST Control Parameters
70(1)
Evaluation of Interpolation Accuracy
71(2)
Application to Digital Terrain Modelling
73(2)
Results and Discussion
75(4)
Conclusions
79(4)
References
81(2)
Scale-Dependent Effect of Input Data Design on Dem Accuracy
83(16)
Radoslav Bonk
Introduction
83(3)
Study Area
86(1)
Methodology
87(2)
Statistical Analysis of Interpolated Surfaces
88(1)
Results
89(3)
Statistical Analysis
89(2)
Spatial Autocorrelation
91(1)
Discussion
92(1)
Conclusions
93(6)
References
97(1)
Referenced Web Sites
98(1)
Srtm as a Possible Source of Elevation Information for Soil-Landscape Modelling
99(22)
Borut Vrscaj
Joel Daroussin
Luca Montanarella
Introduction
99(1)
Gaps and Noise in SRTM Data
100(1)
Digital Surface Model vs. Digital Elevation Model
101(2)
Materials and Methods
103(4)
Description of the Test Area
103(1)
SRTM Elevation Data
104(3)
Results and Discussion
107(4)
Possible Solutions for Data Improvement of SRTM
107(4)
Case Study
111(4)
Quantitative Comparison of the SRTM DEM to National DEMs
111(4)
Two Possible SRTM Processing Workflows
115(1)
Workflow for Building a Seamless Pan-European DEM for Non-critical Applications
115(1)
Procedure for Building a Seamless DEM
116(1)
Conclusions
116(5)
References
118(1)
Referenced Web Sites
119(1)
Appendix
119(1)
Commands
119(1)
Software applications
120(1)
Selected data sources
120(1)
Development of a Pan-European River and Catchment Database
121(24)
Jurgen Vogt
Pierre Soille
Roberto Colombo
Maria Luisa Paracchini
Alfred de Jager
Introduction
121(2)
Study Area
123(1)
Input Data
124(3)
Digital Elevation Data
124(1)
Inland Water Body Layer
125(1)
Environmental Data Layers
126(1)
Methodology
127(8)
Landscape Stratification
128(2)
Threshold Definition
130(3)
River Network Extraction
133(2)
Drainage Basin Delineation
135(1)
Data Validation
135(2)
Additional Features
137(3)
Pfafstetter Coding
137(2)
Adding Names to Rivers and Catchments
139(1)
Conclusions and Outlook
140(5)
References
141(3)
Referenced Web Sites
144(1)
Decision Supporting Hydrological Model for River Basin Flood Control
145(38)
Janos Adolf Szabo
Introduction
145(2)
The DIWA Model
147(16)
Cell Link Network Definition Based on Digital Elevation Model (DEM)
149(2)
Rain or Snow, and Snowmelt
151(1)
Interception and Through-fall Estimation
151(1)
Evaporation and Evapotranspiration
152(2)
Modelling of the Subsurface Run-off Processes
154(6)
Surface Run-off Calculation
160(1)
Numeric Solution
161(1)
Some Numerical Aspects
162(1)
Application of the DIWA Model in the Upper Part of the Tisza River Basin
163(15)
Background and Some Characteristics of the Tisza Basin
163(5)
Data Preparation and Pre-processing
168(3)
Calibration and Validation
171(5)
Scenario Analysis for Vegetation Density Changes on the Upper-Tisza Basin
176(2)
Conclusions
178(5)
References
180(3)
Potential Flood Hazard and Risk Mapping at Pan-European Scale
183(20)
Ad De Roo
Jose Barredo
Carlo Lavalle
Katalin Bodis
Rado Bonk
Introduction
183(2)
Flood Hazard Mapping Using DEM
185(1)
Methodology
186(5)
Step 1: Defining the Elevation Difference of Each Pixel with the River
187(1)
Step 2: Defining the Critical Water Levels
187(4)
Potential Flood Hazard Maps of Europe
191(3)
Validation of the Flood Hazard Map
194(2)
From Regional Flood Hazard to Regional Flood Risk
196(3)
A Flood Risk Map of Europe
199(1)
Conclusions
200(3)
References
200(1)
Referenced Web Sites
201(2)
High-Resolution Dem for Design of Flood Emergency Reservoirs
203(24)
Katalin Bodis
Introduction
203(5)
Materials and Methods
208(5)
The Digital Elevation Model of the Reservoir
213(4)
Source of DEM
213(1)
Creation of DTM
213(2)
Value Check of DTM
215(2)
Application of DEM to Flood Mitigation Plans
217(5)
Quick Area and Reservoir Capacity Calculation
217(2)
Capacity Curve for Planning
219(1)
Flow Direction, Inundation and Discharge Simulation, Running-off Modelling
219(3)
Monitoring of Environmental Changes, Siltation
222(1)
Conclusion
222(5)
References
224(2)
Referenced Web Sites
226(1)
A Quantitative Procedure for Building Physiographic Units for the European Soter Database
227(32)
Endre Dobos
Joel Daroussin
Luca Montanarella
Introduction
227(3)
Materials and Methods
230(16)
The Study Area
230(1)
The Data
230(2)
Methods
232(14)
Results and Discussion
246(8)
Conclusions
254(5)
References
255(1)
Referenced Web Sites
256(1)
Appendix
257(2)
Solar Resource Modelling for Energy Applications
259(16)
Marcel Suri
Thomas Huld
Ewan D. Dunlop
Jaroslav Hofierka
Introduction
259(1)
Solar Radiation Modelling
260(1)
Spatially Distributed Solar Databases
261(2)
Solar Radiation Model r.sun and Terrain Parameters
263(4)
Elevation Above Sea Level
264(1)
Inclination and Aspect
264(1)
Shadowing
265(2)
PVGIS: Application of solar Radiation Model in an Assessment of Photovoltaic Power generation
267(2)
Conclusions
269(6)
References
270(2)
Referenced Web Sites
272(3)
TECHNICAL NOTES
Grass and R - Advanced Gis and Statistical Tools for Dem Analysis
275(8)
Radoslav Bonk
Introduction
275(1)
Case Study
276(5)
Conclusions
281(2)
References
282(1)
Referenced Web Sites
282(1)
Calculation of Potential Drainage Density Index (PDD)
283(7)
Endre Dobos
Introduction
283(2)
Derivation of the PDD Layer
285(5)
Input DEM
285(1)
Step
1. Flow Direction
286(1)
Step
2. Flow Accumulation/Contributing Area/Catchment Area
286(1)
Step
3. Drainage Network
286(2)
Step
4. Potential Drainage Density (PDD)
288(2)
References
290(1)
Appendix: An Arc/Info® AML file to derive a PDD layer from a filled DEM 290(7)
About the Authors 297(10)
Index 307