Muutke küpsiste eelistusi

Digraphs: Theory, Algorithms and Applications New edition [Pehme köide]

  • Formaat: Paperback / softback, 776 pages, kõrgus x laius x paksus: 234x156x38 mm, kaal: 1075 g, 186 illus.
  • Sari: Springer Monographs in Mathematics
  • Ilmumisaeg: 14-Jun-2002
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1852336110
  • ISBN-13: 9781852336110
Teised raamatud teemal:
  • Pehme köide
  • Hind: 69,40 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 776 pages, kõrgus x laius x paksus: 234x156x38 mm, kaal: 1075 g, 186 illus.
  • Sari: Springer Monographs in Mathematics
  • Ilmumisaeg: 14-Jun-2002
  • Kirjastus: Springer London Ltd
  • ISBN-10: 1852336110
  • ISBN-13: 9781852336110
Teised raamatud teemal:
The study of directed graphs has developed enormously over recent decades, yet no book covers more than a tiny fraction of the results from more than 3000 research articles on the topic. Digraphs is the first book to present a unified and comprehensive survey of the subject. In addition to covering the theoretical aspects, including detailed proofs of many important results, the authors present a number of algorithms and applications. The applications of digraphs and their generalizations include among other things recent developments in the Travelling Salesman Problem, genetics and network connectivity. More than 700 exercises and 180 figures will help readers to study the topic while open problems and conjectures will inspire further research.This book will be essential reading and reference for all graduate students, researchers and professionals in mathematics, operational research, computer science and other areas who are interested in graph theory and its applications.
Basic Terminology, Notation and Results.- Distances.- Flows in
Networks.- Classes of Digraphs.- Hamiltonicity and Related Problems.-
Hamiltonian Refinements.- Global Connectivity.- Orientations of Graphs.-
Disjoint Paths and Trees.- Cycle Structure of Digraphs.- Generalizations of
Digraphs.- Additional Topics.- References.- Symbol Index, Author Index,
Subject Index.