Muutke küpsiste eelistusi

Two-Dimensional Constant and Product Polynomial Systems [Kõva köide]

  • Formaat: Hardback, 118 pages, kõrgus x laius: 235x155 mm, 12 Illustrations, color; 1 Illustrations, black and white; VII, 118 p. 13 illus., 12 illus. in color., 1 Hardback
  • Ilmumisaeg: 30-Sep-2025
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 9819655145
  • ISBN-13: 9789819655144
Teised raamatud teemal:
  • Kõva köide
  • Hind: 159,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 188,09 €
  • Säästad 15%
  • See raamat ei ole veel ilmunud. Raamatu kohalejõudmiseks kulub orienteeruvalt 2-4 nädalat peale raamatu väljaandmist.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 118 pages, kõrgus x laius: 235x155 mm, 12 Illustrations, color; 1 Illustrations, black and white; VII, 118 p. 13 illus., 12 illus. in color., 1 Hardback
  • Ilmumisaeg: 30-Sep-2025
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 9819655145
  • ISBN-13: 9789819655144
Teised raamatud teemal:

This book is a monograph about 1-dimensional flow arrays and bifurcations in constant and product polynomial systems. The 1-dimensional flows and the corresponding bifurcation dynamics are discussed. The singular hyperbolic and hyperbolic-secant flows are presented, and  the singular hyperbolic-to-hyperbolic-secant flows are discussed. The singular inflection source, sink and upper, and lower-saddle flows are presented. The corresponding appearing and switching bifurcations are presented for the hyperbolic and hyperbolic-secant networks, and singular flows networks. The corresponding theorem is presented, and the proof of theorem is given. Based on the singular flows, the corresponding hyperbolic and hyperbolic-secant flows are illustrated for a better understanding of the dynamics of constant and product polynomial systems.

Constant and Product Polynomial Systems.- Proof of Theorem 1.1.-
Singular flows bifurcaions and networks.
This book is a monograph about 1-dimensional flow arrays and bifurcations in constant and product polynomial systems. The 1-dimensional flows and the corresponding bifurcation dynamics are discussed. The singular hyperbolic and hyperbolic-secant flows are presented, and  the singular hyperbolic-to-hyperbolic-secant flows are discussed. The singular inflection source, sink and upper, and lower-saddle flows are presented. The corresponding appearing and switching bifurcations are presented for the hyperbolic and hyperbolic-secant networks, and singular flows networks. The corresponding theorem is presented, and the proof of theorem is given. Based on the singular flows, the corresponding hyperbolic and hyperbolic-secant flows are illustrated for a better understanding of the dynamics of constant and product polynomial systems.