Muutke küpsiste eelistusi

Two-dimensional Product-Cubic Systems, Vol. IV: Crossing-quadratic Vector Fields 2024 ed. [Kõva köide]

  • Formaat: Hardback, 256 pages, kõrgus x laius: 235x155 mm, 41 Illustrations, color; 1 Illustrations, black and white; X, 256 p. 42 illus., 41 illus. in color., 1 Hardback
  • Ilmumisaeg: 31-Oct-2024
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031571037
  • ISBN-13: 9783031571039
Teised raamatud teemal:
  • Kõva köide
  • Hind: 150,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 177,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 256 pages, kõrgus x laius: 235x155 mm, 41 Illustrations, color; 1 Illustrations, black and white; X, 256 p. 42 illus., 41 illus. in color., 1 Hardback
  • Ilmumisaeg: 31-Oct-2024
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031571037
  • ISBN-13: 9783031571039
Teised raamatud teemal:
This book, the eighth of 15 related monographs, discusses a product-cubic dynamical system possessing a product-cubic vector field and a crossing-univariate quadratic vector field. It presents equilibrium singularity and bifurcation dynamics, and . the saddle-source (sink) examined is the appearing bifurcations for saddle and source (sink).  The double-inflection saddle equilibriums are the appearing bifurcations of the saddle and center, and also the appearing bifurcations of the network of saddles and centers. The infinite-equilibriums for the switching bifurcations featured in this volume include:









Parabola-source (sink) infinite-equilibriums, Inflection-source (sink) infinite-equilibriums, Hyperbolic (circular) sink-to source infinite-equilibriums, Hyperbolic (circular) lower-to-upper saddle infinite-equilibriums.

Preface .- Crossing-quadratic and product-cubic systems.- Double-inflection-saddles and bifurcation dynamics.- Parabola-saddles and bifurcation.

Dr. Albert C. J. Luo is a Distinguished Research Professor at the Southern Illinois University Edwardsville, in Edwardsville, IL, USA. Dr. Luo worked on Nonlinear Mechanics, Nonlinear Dynamics, and Applied Mathematics. He proposed and systematically developed: (i) the discontinuous dynamical system theory, (ii) analytical solutions for periodic motions in nonlinear dynamical systems, (iii) the theory of dynamical system synchronization, (iv) the accurate theory of nonlinear deformable-body dynamics, (v) new theories for stability and bifurcations of nonlinear dynamical systems. He discovered new phenomena in nonlinear dynamical systems. His methods and theories can help understanding and solving the Hilbert sixteenth problems and other nonlinear physics problems. The main results were scattered in 45 monographs in Springer, Wiley, Elsevier, and World Scientific, over 200 prestigious journal papers, and over 150 peer-reviewed conference papers.