Muutke küpsiste eelistusi

Direct Energy Conversion Technologies [Pehme köide]

  • Formaat: Paperback / softback, 232 pages, kõrgus x laius: 229x178 mm, kaal: 404 g
  • Ilmumisaeg: 18-Nov-2019
  • Kirjastus: Mercury Learning & Information
  • ISBN-10: 1683924533
  • ISBN-13: 9781683924531
  • Formaat: Paperback / softback, 232 pages, kõrgus x laius: 229x178 mm, kaal: 404 g
  • Ilmumisaeg: 18-Nov-2019
  • Kirjastus: Mercury Learning & Information
  • ISBN-10: 1683924533
  • ISBN-13: 9781683924531
This book is designed for students and professionals who specialize in energytechnologies and power plant engineering. It covers the mathematics andphysics of both current conversion, such as solar cells, fuel cells, MHD,thermoelectric, and thermionic power generation, but also discusses emergingconversion technologies such as solar thermal, nuclear fusion, andhydrogen energy.

Features:

  • Covers both current conversion technologies as well as emerging technologies, such as solar thermal, nuclear fusion, and hydrogen energy
  • Written in simple language,illustrated by diagrams, mathematical analysis, and numerical examples



This book is designed for students and professionals who specialize in energytechnologies and power plant engineering. It covers the mathematics andphysics of both current conversion, such as solar cells, fuel cells, MHD,thermoelectric, and thermionic power generation, but also discusses emergingconversion technologies such as solar thermal, nuclear fusion, andhydrogen energy.

Features:

  • Covers both current conversion technologies as well as emerging technologies, such as solar thermal, nuclear fusion, and hydrogen energy
  • Written in simple language,illustrated by diagrams, mathematical analysis, and numerical examples
Chapter 1 Energy Conversion Technologies 1(12)
1.1 Introduction
1(1)
1.2 Electricity Generation
1(6)
1.2.1 Utility Plants or Central Power Plants
2(2)
1.2.2 Captive Stand-Alone Power Plants
4(1)
1.2.3 Cogeneration Plants
4(2)
1.2.4 Autonomous Power Plants
6(1)
1.2.5 Combined-Cycle Power Plants
6(1)
1.3 Transport Energy
7(1)
1.4 Limitations of Current Power Generation Systems
8(2)
1.4.1 Carnot Limitation
8(1)
1.4.2 Metallurgical Limitation
8(1)
1.4.3 Mechanical Links and Plant Reliability
8(1)
1.4.4 Ecological Balance
9(1)
1.4.5 Plant Costs
9(1)
1.4.6 Transmission and Distribution System
9(1)
1.5 Direct Energy Conversion Systems
10(3)
1.5.1 Fuel Cell
10(1)
1.5.2 Solar-Cell Photovoltaic
10(1)
1.5.3 Thermoelectric Power Units
11(1)
1.5.4 Thermionic Converter
11(1)
1.5.5 Magneto-Hydro-Dynamic Generator
12(1)
Chapter 2 Solar Cells 13(34)
2.1 Introduction
13(1)
2.2 Photon Energy
13(3)
2.2.1 Photon Flux
14(2)
2.3 Solid-State Principles
16(3)
2.3.1 Solid-State Phenomenon
16(1)
2.3.2 Fermi Energy
16(1)
2.3.3 Energy Distribution of Electron Gas
17(1)
2.3.4 Fermi Energy Calculation
18(1)
2.3.5 Behavior of Free Electrons
19(1)
2.4 The Band Theory
19(2)
2.4.1 Energy Bands for Different Materials
20(1)
2.5 Semiconductors
21(1)
2.5.1 Types of Semiconductors
21(1)
2.6 p-n Junction
22(1)
2.7 Theory of Solar Cells Photovoltaics
22(5)
2.7.1 Types of Solar Cells
23(1)
2.7.2 Operation of Cell
24(1)
2.7.3 Performance Characteristics
24(1)
2.7.4 Solar Energy Utilization
25(1)
2.7.5 Solar Cell Efficiency and Losses
25(1)
2.7.6 Methods of Increasing Cell Efficiency
26(1)
2.8 Performance Analysis
27(2)
2.9 Solar Cell Materials
29(2)
2.9.1 Monocrystalline Silicon Solar Cells
29(2)
2.9.2 Polycrystalline Silicon Solar Cell
31(1)
2.9.3 Thin-Film Solar Cells
31(1)
2.10 Solar Arrays
31(2)
2.10.1 Solar Modules
31(1)
2.10.2 Solar Array or Generator
32(1)
2.11 Solar Cell Power Plants
33(2)
2.11.1 Autonomous Solar Power Plants
33(1)
2.11.2 Combined Solar-Wind-Diesel Power Plant
34(1)
2.12 Energy Storage
35(1)
2.13 Design of a Solar Power Plant
36(4)
2.13.1 Size of Solar Array
37(1)
2.13.2 Solar Panel Tilt
38(1)
2.13.3 Storage Battery Capacity
38(2)
2.14 Applications of Solar Photovoltaic Systems
40(3)
2.14.1 Autonomous Power Systems
41(1)
2.14.2 Central Power Generation
41(1)
2.14.3 Solar Water Pumps
41(1)
2.14.4 Space Satellite Power Station (SSPS)
42(1)
2.15 Advantages of Photovoltaic Solar Systems
43(1)
2.16 Limitations of Photovoltaic Solar Systems
43(4)
Chapter 3 Fuel Cells 47(30)
3.1 Introduction
47(2)
3.2 H2-O2 Fuel Cell
49(11)
3.2.1 Principle of Operation
49(2)
3.2.2 Performance Analysis
51(2)
3.2.3 Performance Characteristics
53(1)
3.2.4 Polarization in Fuel Cells
54(6)
3.3 Types of Fuel Cells
60(7)
3.3.1 Proton Exchange Membrane Fuel Cells (PEMFC)
62(1)
3.3.2 Solid Oxide Fuel Cells (SOFC)
63(1)
3.3.3 Alkaline Fuel Cells (AFC)
64(1)
3.3.4 Molten Carbonate Fuel Cells (MCFC)
64(1)
3.3.5 Direct Methanol Fuel Cell (DMFC)
64(1)
3.3.6 Phosphoric Acid Fuel Cell (PAFC)
65(1)
3.3.7 Regenerative Fuel Cells (RFC)
65(2)
3.4 Applications of Fuel Cells
67(6)
3.4.1 Central Power Generation
67(4)
3.4.2 Cogeneration Units
71(2)
3.4.3 Mobile Units for Automotive Vehicles
73(1)
3.5 Advantages and Limitations of Fuel Cells
73(4)
3.5.1 Advantages
73(1)
3.5.2 Limitations
74(3)
Chapter 4 Magneto-Hydrodynamic Power Generation 77(20)
4.1 Introduction
77(1)
4.2 Principle of Operations
78(3)
4.3 Design Problems
81(2)
4.3.1 Gas Velocity
81(1)
4.3.2 Magnetic Flux Density
82(1)
4.3.3 Gas Electrical Conductivity
82(1)
4.3.4 MHD Duct
83(1)
4.4 Thermodynamic Performance Analysis
83(2)
4.5 Electrical Analysis
85(1)
4.6 MHD Generator Efficiency
86(3)
4.7 Open Cycle MHD Power Generation System
89(1)
4.8 Closed Cycle MHD Power Generation System
90(2)
4.8.1 Seeded Insert Gas System
91(1)
4.8.2 Liquid Metal System
92(1)
4.9 Hybridization of MHD Power Generator
92(2)
4.10 Indian Experience
94(1)
4.11 Advantages of an MHD Power Generator
95(1)
4.12 Limitations of MHD Technology
95(2)
Chapter 5 Thermoelectric Power Generation 97(26)
5.1 Introduction
97(2)
5.2 Thermoelectric Effects
99(4)
5.2.1 Seebeck Effect
99(1)
5.2.2 Peltier Effect
100(1)
5.2.3 Thomson Effect
101(1)
5.2.4 Joule Effect
101(1)
5.2.5 Kelvin Relations
102(1)
5.3 Principle of Operation of a Thermoelectric Power Generator
103(1)
5.4 Performance Analysis of Thermoelectric Generator
104(11)
5.4.1 Figure of Merit
105(1)
5.4.2 Maximum Power
106(9)
5.5 Selection of Materials for Thermoelectric Generators
115(2)
5.5.1 Metals
116(1)
5.5.2 Semiconductors
116(1)
5.5.3 High Temperature Semiconductors
117(1)
5.6 Applications of Thermoelectric Generators
117(3)
5.6.1 Thermopile and Cascading Operation
118(1)
5.6.2 Combined Thermoelectric and Steam Power Plant
118(1)
5.6.3 Thermoelectric Waste Heat Stack
119(1)
5.6.4 Decay Heat of Radioactive Isotopes
119(1)
5.6.5 Solar Energy
119(1)
5.7 Limitations
120(3)
Chapter 6 Thermionic Power Generation 123(12)
6.1 Introduction
123(1)
6.2 Principle of Operation
124(2)
6.2.1 Fermi Energy Level
125(1)
6.3 Performance of Thermionic Generator
126(4)
6.4 Applications of Thermionic Generator
130(2)
6.4.1 Thermionic Generator in the Riser Tube of a Boiler
130(1)
6.4.2 Thermionic Generator in a Nuclear Reactor
131(1)
6.4.3 MHD-Thermionic Generator-Steam Power Plant
131(1)
6.5 Limitations of a Thermionic Generator
132(3)
Chapter 7 Exploring New Energy Technologies 135(12)
7.1 Introduction
135(1)
7.2 Requirements of New Energy Technologies
135(1)
7.3 Design Requirements
136(3)
7.3.1 Collection System
137(1)
7.3.2 Solar System Model
138(1)
7.3.3 Optimum Task to Energy Level Match
139(1)
7.4 Exergy Analysis of Energy Systems
139(3)
7.4.1 Exergy Efficiency
140(1)
7.4.2 Exergy Efficiency of Solar Collectors
140(2)
7.5 Economic Evaluation of Energy Systems
142(2)
7.5.1 Life-Cycle Costing Method
143(1)
7.5.2 Net Cost-Saving Method
143(1)
7.5.3 Net Benefit/Cost Ratio Method
143(1)
7.6 Internal Rate of Return for Investment in New Energy Technology
144(3)
Chapter 8 Solar Thermal Energy 147(54)
8.1 Introduction
147(1)
8.2 Solar Radiation
148(2)
8.2.1 Extraterrestrial Solar Radiation
148(1)
8.2.2 Terrestrial Solar Radiation
149(1)
8.3 Solar Radiation Geometry
150(2)
8.3.1 Radiation Angles
150(1)
8.3.2 Relationship among Solar Angles
151(1)
8.3.3 Clearance Index
151(1)
8.4 Measurement of Solar Radiations
152(1)
8.5 Solar Collectors
153(2)
8.5.1 Flat Plate Collectors
153(1)
8.5.2 Concentrating Collectors
154(1)
8.6 Flat Plate Collectors
155(9)
8.6.1 Total Solar Radiation Incident on an Inclined Solar Collector
155(4)
8.6.2 Performance Evaluation
159(3)
8.6.3 Material Selection
162(2)
8.7 Design of Flat Plate Collector
164(6)
8.7.1 Optical Design of Collector
164(3)
8.7.2 Thermal Design of Collector
167(3)
8.8 Applications of Flat Plate Collector
170(7)
8.8.1 Solar Water Heaters
171(2)
8.8.2 Solar Cookers
173(2)
8.8.3 Solar Refrigeration
175(1)
8.8.4 Solar Milk Cooler
176(1)
8.8.5 Solar Water Pumps
176(1)
8.9 Focusing (Concentrating) Collectors
177(4)
8.9.1 Performance Evaluation
177(1)
8.9.2 Optical Efficiency
178(1)
8.9.3 Optical Design of Concentrating Collector
179(1)
8.9.4 Comparison of Performance of Different Collectors
180(1)
8.10 Solar Thermal Power Plants
181(9)
8.10.1 Parabolic Trough Solar Power Plant
181(3)
8.10.2 Central Receiver Solar Power Plants
184(2)
8.10.3 Disk-Sterling Engine System
186(1)
8.10.4 Solar Chimney Power Plant
187(1)
8.10.5 Solar Ponds
188(2)
8.11 Design of Solar Thermal Plants
190(1)
8.12 Heliostats
191(2)
8.12.1 Heliostat Losses
192(1)
8.12.2 Receiver
192(1)
8.12.3 Heat Transport System
193(1)
8.13 Thermal Energy Storage
193(3)
8.13.1 Thermocline Storage System
194(1)
8.13.2 Hot-Cold System
195(1)
8.14 Limitation of Solar Energy
196(5)
Chapter 9 Nuclear Fusion Energy 201(10)
9.1 Introduction
201(2)
9.2 Principle of Fusion Process
203(2)
9.2.1 Artificial Fusion Reaction
203(1)
9.2.2 Thermonuclear Fusion
204(1)
9.3 Tokamak Fusion Reactor
205(1)
9.4 Inertial Confinement Reactor
206(1)
9.5 Future Nuclear Fusion Power Plant
207(1)
9.6 Advantages of Fusion Energy
208(3)
Chapter 10 Hydrogen Energy 211(14)
10.1 Introduction
211(1)
10.2 Production of Hydrogen
212(3)
10.2.1 From Fossil Fuels
212(2)
10.2.2 By Water Electrolysis
214(1)
10.2.3 Solar Energy Methods
215(1)
10.3 Hydrogen Storage and Distribution
215(2)
10.3.1 Hydrogen Storage
215(1)
10.3.2 Hydrogen Transportation
216(1)
10.3.3 Safety Precautions
216(1)
10.4 Properties of Hydrogen
217(1)
10.5 Applications of Hydrogen Energy
218(1)
10.6 Hydrogen Energy for AIR and Surface Transport
218(2)
10.6.1 Jet Fuel
218(1)
10.6.2 Road Vehicles
219(1)
10.7 Hydrogen Energy For Power Generation
220(1)
10.7.1 Central Power Plants
220(1)
10.7.2 Autonomous Power Plants
220(1)
10.8 Miscellaneous Applications
221(1)
10.9 Advantages and Limitations of Hydrogen Energy
221(4)
10.9.1 Advantages
221(1)
10.9.2 Limitations
221(4)
Index 225
Singal R. K. : R. K. Singal, PhD is a university instructor with a specialty in wind and solar power.

Tabatabaian Mehrzad : Mehrzad Tabatabaian holds a PhD from McGill University and is currently Chair of the BCIT School of Energy Research Committee. He has published several papers for scientific journals and conferences, and he has written textbooks on multiphysics and turbulent flow modelling, thermodynamics, and direct energy conversion. He holds several registered patents in the energy field and currently teaches courses in renewable energy and thermal engineering.