Preface |
|
xi | |
|
1 An Introduction to Dynamical Systems |
|
|
1 | (10) |
|
1.1 What Is a Dynamical System |
|
|
1 | (1) |
|
1.2 Numerical Iteration and Orbits |
|
|
2 | (4) |
|
|
6 | (2) |
|
1.4 Modeling Using Discrete Dynamical Systems |
|
|
8 | (3) |
|
|
11 | (22) |
|
2.1 Introduction to Sequences |
|
|
11 | (1) |
|
2.2 Convergence of Sequences |
|
|
12 | (3) |
|
|
15 | (3) |
|
2.4 Arithmetic Limit Theorems |
|
|
18 | (1) |
|
2.5 Bounded and Unbounded Sequences |
|
|
19 | (4) |
|
|
23 | (1) |
|
|
24 | (5) |
|
|
29 | (4) |
|
3 Fixed Points and Periodic Points |
|
|
33 | (20) |
|
|
33 | (15) |
|
3.1.1 Fixed Points of Linear Systems |
|
|
34 | (3) |
|
3.1.2 Attracting Fixed Points of Nonlinear Systems |
|
|
37 | (4) |
|
3.1.3 Repelling Fixed Points of Nonlinear Systems |
|
|
41 | (3) |
|
3.1.4 Neutral Fixed Points of Nonlinear Systems |
|
|
44 | (4) |
|
|
48 | (5) |
|
3.2.1 Stability of Periodic Points |
|
|
48 | (2) |
|
3.2.2 New Periodic Orbits from Old |
|
|
50 | (3) |
|
4 Analysis of Fixed Points |
|
|
53 | (16) |
|
4.1 Fixed Point Existence Theorems |
|
|
53 | (6) |
|
4.2 The Inverse and Implicit Function Theorems |
|
|
59 | (5) |
|
4.2.1 The Inverse Function Theorems |
|
|
59 | (3) |
|
4.2.2 The Implicit Function Theorem |
|
|
62 | (2) |
|
4.3 Hyperbolic Periodic Points |
|
|
64 | (5) |
|
|
69 | (12) |
|
5.1 What is a Bifurcation? |
|
|
69 | (2) |
|
5.2 Introduction to Bifurcation Diagrams |
|
|
71 | (1) |
|
5.3 The Tangent Bifurcation |
|
|
72 | (4) |
|
5.4 The Period Doubling Bifurcation |
|
|
76 | (5) |
|
6 Examples of Global Dynamics |
|
|
81 | (12) |
|
6.1 Local Dynamics vs. Global Dynamics |
|
|
81 | (2) |
|
6.2 The Logistic Map with a = 4 (Part 1) |
|
|
83 | (2) |
|
|
85 | (6) |
|
6.3.1 Basic Dynamics of the Doubling Map |
|
|
86 | (2) |
|
6.3.2 The Doubling Map in Binary |
|
|
88 | (3) |
|
6.4 The Logistic Map with a > 4 (Part 1) |
|
|
91 | (2) |
|
7 The Tools of Global Dynamics |
|
|
93 | (10) |
|
7.1 How to study Global Dynamics |
|
|
93 | (1) |
|
|
94 | (2) |
|
7.3 The Shift Map (Part 1) |
|
|
96 | (7) |
|
7.3.1 The Sequence Space on 2 Symbols |
|
|
96 | (3) |
|
7.3.2 Dynamics on the Sequence Space on 2 Symbols |
|
|
99 | (4) |
|
|
103 | (14) |
|
8.1 Introduction: The Definition of Chaos |
|
|
103 | (4) |
|
8.2 The Shift Map (Part 2) |
|
|
107 | (1) |
|
8.3 Topological Conjugacy |
|
|
108 | (3) |
|
8.4 Return to The Doubling Map |
|
|
111 | (1) |
|
8.5 The Logistic Map with a > 4 (Part 2) |
|
|
111 | (4) |
|
8.6 The Logistic Map with a = 4 (Part 2) |
|
|
115 | (2) |
|
9 Prom Fixed Points to Chaos |
|
|
117 | (8) |
|
|
117 | (2) |
|
9.2 Computing a Bifurcation Diagram |
|
|
119 | (1) |
|
9.3 Period-doubling to Chaos |
|
|
120 | (2) |
|
9.4 Windows of Stable Periodic Behavior |
|
|
122 | (3) |
|
|
125 | (10) |
|
|
125 | (1) |
|
10.2 The Intermediate Value Theorem |
|
|
125 | (2) |
|
10.3 Review of Two Fixed Point Theorems |
|
|
127 | (1) |
|
10.4 Sarkovskii's Theorem |
|
|
127 | (8) |
|
10.4.1 Discovering Sarkovskii's Theorem |
|
|
128 | (2) |
|
10.4.2 Using Sarkovskii's Theorem |
|
|
130 | (5) |
|
11 Dynamical Systems on the Plane |
|
|
135 | (24) |
|
11.1 Linear Algebra Foundations |
|
|
135 | (3) |
|
11.2 Linear Systems with Real Eigenvalues |
|
|
138 | (6) |
|
11.3 Linear Systems with Complex Eigenvalues |
|
|
144 | (4) |
|
11.4 Fixed Points of Nonlinear Systems |
|
|
148 | (5) |
|
|
153 | (2) |
|
11.6 Chaos in the Henon map |
|
|
155 | (4) |
|
|
159 | (10) |
|
12.1 Motivating the Horseshoe Map |
|
|
159 | (1) |
|
|
160 | (3) |
|
12.3 More Symbolic Dynamics |
|
|
163 | (3) |
|
12.3.1 Two-Sided Sequence Space |
|
|
163 | (1) |
|
12.3.2 The Two-Sided Shift Map |
|
|
164 | (2) |
|
12.4 A Horseshoe in the Henon Map |
|
|
166 | (3) |
|
13 Generalized Symbolic Dynamics |
|
|
169 | (24) |
|
13.1 Topology Foundations |
|
|
169 | (2) |
|
13.2 Shift Dynamical Systems |
|
|
171 | (10) |
|
13.2.1 One-Sided Shift Spaces |
|
|
171 | (1) |
|
13.2.2 Two-Sided Shift Spaces |
|
|
172 | (6) |
|
13.2.3 Shifts of Finite Type |
|
|
178 | (3) |
|
13.3 Representing Shift Spaces with Graphs |
|
|
181 | (7) |
|
13.3.1 Higher Edge Graphs |
|
|
184 | (4) |
|
|
188 | (5) |
Bibliography |
|
193 | (2) |
Index |
|
195 | |