Muutke küpsiste eelistusi

Discovery Science: 21st International Conference, DS 2018, Limassol, Cyprus, October 2931, 2018, Proceedings 2018 ed. [Pehme köide]

  • Formaat: Paperback / softback, 482 pages, kõrgus x laius: 235x155 mm, kaal: 765 g, 137 Illustrations, black and white; XXI, 482 p. 137 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Artificial Intelligence 11198
  • Ilmumisaeg: 07-Oct-2018
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030017702
  • ISBN-13: 9783030017705
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 482 pages, kõrgus x laius: 235x155 mm, kaal: 765 g, 137 Illustrations, black and white; XXI, 482 p. 137 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Artificial Intelligence 11198
  • Ilmumisaeg: 07-Oct-2018
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030017702
  • ISBN-13: 9783030017705
This book constitutes the proceedings of the 21st International Conference on Discovery Science, DS 2018, held in Limassol, Cyprus, in October 2018, co-located with the International Symposium on Methodologies for Intelligent Systems, ISMIS 2018.





The 30 full papers presented together with 5 abstracts of invited talks in this volume were carefully reviewed and selected from 71 submissions. The scope of the conference includes the development and analysis of methods for discovering scientific knowledge, coming from machine learning, data mining, intelligent data analysis, big data analysis as well as their application in various scientific domains. The papers are organized in the following topical sections: Classification; meta-learning; reinforcement learning; streams and time series; subgroup and subgraph discovery; text mining; and applications.

Classification.- Meta-Learning.- Reinforcement Learning.- Streams and Time Series.- Subgroup and Subgraph Discovery.- Text Mining.- Applications.