|
|
|
|
3 | (8) |
|
|
3 | (3) |
|
|
5 | (1) |
|
1.2 Alignment of Modules Along a Guide Path |
|
|
6 | (5) |
|
|
8 | (1) |
|
1.2.2 Reduction of the Number of Twist Angles k |
|
|
8 | (1) |
|
|
9 | (2) |
|
|
11 | (8) |
|
|
11 | (1) |
|
2.2 Trapezoid-Tiling of a Planar Unknot |
|
|
12 | (2) |
|
2.2.1 Alignment of Trapezoidal Units to the Guide Path |
|
|
13 | (1) |
|
|
14 | (1) |
|
2.3.1 Domain Visualization |
|
|
14 | (1) |
|
2.4 Optimization of a PZ Knot 63 |
|
|
15 | (4) |
|
|
17 | (2) |
|
|
19 | (12) |
|
|
19 | (1) |
|
3.2 Virtual Pipe-Z Manipulatives |
|
|
20 | (3) |
|
3.2.1 Virtual PZ Knotting |
|
|
21 | (2) |
|
3.3 Physical Pipe-Z Manipulatives |
|
|
23 | (8) |
|
3.3.1 Fabrication of the Physical Model of Pipe-Z Module |
|
|
25 | (4) |
|
|
29 | (2) |
|
|
31 | (6) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (4) |
|
|
35 | (2) |
|
|
37 | (10) |
|
|
37 | (1) |
|
5.2 Foldable Pipe-Z Module (fPZM) |
|
|
38 | (6) |
|
5.2.1 Folding Analysis of fPZM |
|
|
38 | (2) |
|
5.2.2 Folding of a Multi-module Deployable Pipe-Z (dPZ) |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
42 | (1) |
|
5.2.5 Collapsible Concentric Toric Rings |
|
|
43 | (1) |
|
5.3 Low-Fidelity Prototype of Deployable Pipe-Z |
|
|
44 | (3) |
|
|
44 | (3) |
|
|
|
|
47 | (22) |
|
6.1 Modularity Versus Free-Form |
|
|
47 | (3) |
|
|
50 | (2) |
|
|
52 | (1) |
|
6.4 Preliminary Static Analysis of TZM |
|
|
53 | (5) |
|
6.4.1 Topological Properties of TZM |
|
|
54 | (2) |
|
|
56 | (1) |
|
6.4.3 Truss-Z as an Earthquake-Resistant Structure |
|
|
57 | (1) |
|
|
58 | (1) |
|
6.5.1 Foldable TZM (fTZM) |
|
|
58 | (1) |
|
|
58 | (11) |
|
|
61 | (3) |
|
|
64 | (3) |
|
|
67 | (2) |
|
7 Single-Branch Truss-Z (STZ) |
|
|
69 | (36) |
|
7.1 Alignment of STZ to the Given Path |
|
|
69 | (2) |
|
|
71 | (6) |
|
|
73 | (4) |
|
|
77 | (6) |
|
7.3.1 Encoding of STZ Planar Layout |
|
|
78 | (1) |
|
7.3.2 Objective (cost) Function |
|
|
78 | (2) |
|
7.3.3 Calibration of Weights for the Cost Function |
|
|
80 | (1) |
|
7.3.4 Tournament Selection |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
83 | (3) |
|
7.5 Genetic Algorithm (GA) |
|
|
86 | (4) |
|
|
86 | (1) |
|
7.5.2 GA with Uniform Crossover (GAUX) |
|
|
86 | (1) |
|
7.5.3 GA with One-Point Crossover (GAOPX) |
|
|
87 | (1) |
|
7.5.4 Interpretation of the Results |
|
|
88 | (2) |
|
7.6 Graph-Theoretical Method |
|
|
90 | (11) |
|
|
95 | (1) |
|
7.6.2 Can a TZ Path Be Even Shorter? |
|
|
96 | (2) |
|
|
98 | (3) |
|
7.7 The Supporting Structure |
|
|
101 | (4) |
|
|
103 | (2) |
|
8 Multi-branch Truss-Z (MTZ) |
|
|
105 | (16) |
|
8.1 Creation of a MTZ Network |
|
|
105 | (1) |
|
8.2 Alignment of MTZ to Given Paths |
|
|
106 | (2) |
|
|
108 | (1) |
|
8.4 Optimization of MTZ with Evolution Strategy |
|
|
109 | (1) |
|
8.5 Transformation Operators |
|
|
110 | (3) |
|
8.5.1 Transformation of MTZC to M7Z6 |
|
|
113 | (1) |
|
|
113 | (4) |
|
8.6.1 Evolution Strategy-Based Experiment (ES) |
|
|
114 | (3) |
|
|
117 | (4) |
|
|
118 | (2) |
|
|
120 | (1) |
Glossary |
|
121 | |