Muutke küpsiste eelistusi

Discrete Weak KAM Theory: An Introduction through Examples and its Applications to Twist Maps [Pehme köide]

  • Formaat: Paperback / softback, 176 pages, kõrgus x laius: 235x155 mm, 7 Illustrations, color; 1 Illustrations, black and white; X, 176 p. 8 illus., 7 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 2377
  • Ilmumisaeg: 17-Sep-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031968085
  • ISBN-13: 9783031968082
Teised raamatud teemal:
  • Pehme köide
  • Hind: 67,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 79,09 €
  • Säästad 15%
  • See raamat ei ole veel ilmunud. Raamatu kohalejõudmiseks kulub orienteeruvalt 2-4 nädalat peale raamatu väljaandmist.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 176 pages, kõrgus x laius: 235x155 mm, 7 Illustrations, color; 1 Illustrations, black and white; X, 176 p. 8 illus., 7 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 2377
  • Ilmumisaeg: 17-Sep-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031968085
  • ISBN-13: 9783031968082
Teised raamatud teemal:

The aim of this book is to present a self-contained account of discrete weak KAM theory. Putting aside its intrinsic elegance, this theory also provides a toy model for classical weak KAM theory, where many technical difficulties disappear, but where the central ideas and results persist. It therefore serves as a good introduction to (continuous) weak KAM theory. The first three chapters give a general exposition of the general abstract theory, concluding with a discussion of the relations between the results proved in the discrete setting and the analogous theorems of classical weak KAM theory. Several examples are studied and some key differences between the discrete and classical theory are highlighted. The final chapter is devoted to the historical problem of conservative twist maps of the annulus.

 

Chapter
1. Introduction.
Chapter
2. The discrete weak KAM setting.-
Chapter
3. Characterizations of the Aubry sets.
Chapter
4. Mather measures,
discounted semigroups.
Chapter
5. A family of examples.
Chapter
6. Twist
maps.
Maxime Zavidovique studied mathematics at Ecole Normale Supérieure in Lyon, France. He completed his PhD in 2011, under the supervision of Albert Fathi. Since 2011 he has held an Assistant Professor position at Sorbonne Université (formerly Jussieu) in the IMJ-PRG laboratory. His research focuses on various versions of weak KAM theory (including the discrete and the classical ones), and convergence problems of solutions to approximations of the HamiltonJacobi equation.