Muutke küpsiste eelistusi

Distributed Deep Learning and Explainable AI (XAI) in Industry 4.0 [Kõva köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Hardback, 382 pages, kõrgus x laius: 235x155 mm, 159 Illustrations, color; 8 Illustrations, black and white; XII, 382 p. 167 illus., 159 illus. in color., 1 Hardback
  • Sari: Information Systems Engineering and Management 55
  • Ilmumisaeg: 15-Sep-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031946367
  • ISBN-13: 9783031946363
Teised raamatud teemal:
  • Kõva köide
  • Hind: 169,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 198,99 €
  • Säästad 15%
  • See raamat ei ole veel ilmunud. Raamatu kohalejõudmiseks kulub orienteeruvalt 2-4 nädalat peale raamatu väljaandmist.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 382 pages, kõrgus x laius: 235x155 mm, 159 Illustrations, color; 8 Illustrations, black and white; XII, 382 p. 167 illus., 159 illus. in color., 1 Hardback
  • Sari: Information Systems Engineering and Management 55
  • Ilmumisaeg: 15-Sep-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031946367
  • ISBN-13: 9783031946363
Teised raamatud teemal:

This book is a comprehensive resource that delves into the integration of advanced artificial intelligence techniques within the context of modern industrial practices. It systematically explores how distributed deep learning methodologies can be effectively combined with explainable AI to enhance transparency in Industry 4.0 applications. In recent years, neural networks and other deep learning models have produced remarkable outcomes in a variety of fields, including image recognition, natural language processing, and decision-making. Concerns have been raised regarding the transparency and interpretability of these models as a result of their increasing intricacy. The demand for methodologies and approaches associated with explainable artificial intelligence (XAI) has consequently increased. The primary aim of XAI is to enhance the transparency and comprehensibility of deep learning model decision-making processes for stakeholders, irrespective of their technical expertise.

Introduction to Industry 4.0: Practical issues and challenges.-
Explainable AI Principles for Industry 4.0.- Explainable AI principles of
building industry 4.0.- Transformative Healthcare: Industry 4.0 Integration
of Distributed Deep Learning and XAI.