1 Introduction |
|
1 | (10) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
3 | (3) |
|
1.4 The Need for Distributed Algorithms |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (3) |
Part I Background |
|
|
2 Introduction to Molecular Biology |
|
|
11 | (16) |
|
|
11 | (1) |
|
|
12 | (4) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (1) |
|
2.3 Central Dogma of Life |
|
|
16 | (4) |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
2.4 Biotechnological Methods |
|
|
20 | (2) |
|
|
20 | (1) |
|
2.4.2 Polymerase Chain Reaction |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.5.1 Nucleotide Databases |
|
|
22 | (1) |
|
2.5.2 Protein Sequence Databases |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
24 | (3) |
|
3 Graphs, Algorithms, and Complexity |
|
|
27 | (24) |
|
|
27 | (1) |
|
|
27 | (6) |
|
|
29 | (1) |
|
3.2.2 Graph Representations |
|
|
29 | (1) |
|
3.2.3 Paths, Cycles, and Connectivity |
|
|
30 | (2) |
|
|
32 | (1) |
|
3.2.5 Spectral Properties of Graphs |
|
|
32 | (1) |
|
|
33 | (10) |
|
3.3.1 Time and Space Complexities |
|
|
33 | (1) |
|
|
34 | (1) |
|
3.3.3 Fundamental Approaches |
|
|
35 | (1) |
|
3.3.4 Dynamic Programming |
|
|
35 | (1) |
|
|
36 | (5) |
|
|
41 | (2) |
|
|
43 | (4) |
|
|
44 | (1) |
|
3.4.2 Coping with NP-Completeness |
|
|
45 | (2) |
|
|
47 | (2) |
|
|
49 | (2) |
|
4 Parallel and Distributed Computing |
|
|
51 | (30) |
|
|
51 | (1) |
|
4.2 Architectures for Parallel and Distributed Computing |
|
|
52 | (2) |
|
4.2.1 Interconnection Networks |
|
|
52 | (1) |
|
4.2.2 Multiprocessors and Multicomputers |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
54 | (14) |
|
4.3.1 Complexity of Parallel Algorithms |
|
|
55 | (1) |
|
4.3.2 Parallel Random Access Memory Model |
|
|
55 | (2) |
|
4.3.3 Parallel Algorithm Design Methods |
|
|
57 | (2) |
|
4.3.4 Shared Memory Programming |
|
|
59 | (4) |
|
4.3.5 Multi-threaded Programming |
|
|
63 | (3) |
|
4.3.6 Parallel Processing in UNIX |
|
|
66 | (2) |
|
4.4 Distributed Computing |
|
|
68 | (6) |
|
4.4.1 Distributed Algorithm Design |
|
|
69 | (1) |
|
|
69 | (1) |
|
4.4.3 Message Passing Interface |
|
|
70 | (3) |
|
4.4.4 Distributed Processing in UNIX |
|
|
73 | (1) |
|
|
74 | (2) |
|
|
76 | (5) |
Part II Biological Sequences |
|
|
|
81 | (30) |
|
|
81 | (1) |
|
5.2 Exact String Matching |
|
|
82 | (9) |
|
5.2.1 Sequential Algorithms |
|
|
82 | (8) |
|
5.2.2 Distributed String Matching |
|
|
90 | (1) |
|
5.3 Approximate String Matching |
|
|
91 | (1) |
|
5.4 Longest Subsequence Problems |
|
|
92 | (4) |
|
5.4.1 Longest Common Subsequence |
|
|
92 | (3) |
|
5.4.2 Longest Increasing Subsequence |
|
|
95 | (1) |
|
|
96 | (11) |
|
5.5.1 Construction of Suffix Trees |
|
|
97 | (5) |
|
5.5.2 Applications of Suffix Trees |
|
|
102 | (2) |
|
|
104 | (3) |
|
|
107 | (2) |
|
|
109 | (2) |
|
|
111 | (24) |
|
|
111 | (1) |
|
|
112 | (3) |
|
6.2.1 The Objective Function |
|
|
112 | (2) |
|
6.2.2 Scoring Matrices for Proteins |
|
|
114 | (1) |
|
|
115 | (5) |
|
|
115 | (3) |
|
|
118 | (2) |
|
6.4 Multiple Sequence Alignment |
|
|
120 | (3) |
|
|
121 | (1) |
|
6.4.2 Progressive Alignment |
|
|
122 | (1) |
|
6.5 Alignment with Suffix Trees |
|
|
123 | (1) |
|
|
124 | (2) |
|
|
124 | (1) |
|
|
125 | (1) |
|
6.7 Parallel and Distributed Sequence Alignment |
|
|
126 | (4) |
|
6.7.1 Parallel and Distributed SW Algorithm |
|
|
126 | (1) |
|
|
127 | (2) |
|
6.7.3 Parallel/Distributed CLUSTALW |
|
|
129 | (1) |
|
|
130 | (2) |
|
|
132 | (3) |
|
7 Clustering of Biological Sequences |
|
|
135 | (26) |
|
|
135 | (1) |
|
|
136 | (2) |
|
7.2.1 Distance and Similarity Measures |
|
|
136 | (1) |
|
7.2.2 Validation of Cluster Quality |
|
|
137 | (1) |
|
|
138 | (6) |
|
7.3.1 Hierarchical Algorithms |
|
|
138 | (2) |
|
7.3.2 Partitional Algorithms |
|
|
140 | (3) |
|
|
143 | (1) |
|
7.4 Clustering Algorithms Targeting Biological Sequences |
|
|
144 | (2) |
|
7.4.1 Alignment-Based Clustering |
|
|
144 | (1) |
|
7.4.2 Other Similarity-Based Methods |
|
|
144 | (1) |
|
7.4.3 Graph-Based Clustering |
|
|
145 | (1) |
|
7.5 Distributed Clustering |
|
|
146 | (10) |
|
7.5.1 Hierarchical Clustering |
|
|
146 | (6) |
|
|
152 | (2) |
|
7.5.3 Graph-Based Clustering |
|
|
154 | (1) |
|
7.5.4 Review of Existing Algorithms |
|
|
155 | (1) |
|
|
156 | (3) |
|
|
159 | (2) |
|
|
161 | (22) |
|
|
161 | (2) |
|
|
163 | (3) |
|
8.2.1 Stoye and Gusfield Algorithm |
|
|
164 | (2) |
|
8.2.2 Distributed Tandem Repeat Search |
|
|
166 | (1) |
|
|
166 | (13) |
|
8.3.1 Probabilistic Approaches |
|
|
169 | (2) |
|
8.3.2 Combinatorial Methods |
|
|
171 | (3) |
|
8.3.3 Parallel and Distributed Motif Search |
|
|
174 | (4) |
|
8.3.4 A Survey of Recent Distributed Algorithms |
|
|
178 | (1) |
|
|
179 | (2) |
|
|
181 | (2) |
|
|
183 | (30) |
|
|
183 | (1) |
|
|
184 | (6) |
|
9.2.1 Fundamental Methods |
|
|
185 | (1) |
|
9.2.2 Hidden Markov Models |
|
|
186 | (1) |
|
9.2.3 Nature Inspired Methods |
|
|
187 | (2) |
|
9.2.4 Distributed Gene Finding |
|
|
189 | (1) |
|
|
190 | (10) |
|
9.3.1 Sorting by Reversals |
|
|
191 | (2) |
|
|
193 | (3) |
|
|
196 | (3) |
|
9.3.4 Distributed Genome Rearrangement Algorithms |
|
|
199 | (1) |
|
|
200 | (6) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
203 | (1) |
|
9.4.4 Distributed Haplotype Inference Algorithms |
|
|
204 | (2) |
|
|
206 | (2) |
|
|
208 | (5) |
Part III Biological Networks |
|
|
10 Analysis of Biological Networks |
|
|
213 | (28) |
|
|
213 | (1) |
|
10.2 Networks in the Cell |
|
|
214 | (3) |
|
10.2.1 Metabolic Networks |
|
|
214 | (1) |
|
10.2.2 Gene Regulation Networks |
|
|
215 | (1) |
|
10.2.3 Protein Interaction Networks |
|
|
216 | (1) |
|
10.3 Networks Outside the Cell |
|
|
217 | (4) |
|
10.3.1 Networks of the Brain |
|
|
217 | (2) |
|
10.3.2 Phylogenetic Networks |
|
|
219 | (1) |
|
|
220 | (1) |
|
10.4 Properties of Biological Networks |
|
|
221 | (3) |
|
|
221 | (1) |
|
|
222 | (1) |
|
10.4.3 Clustering Coefficient |
|
|
223 | (1) |
|
|
223 | (1) |
|
|
224 | (6) |
|
|
224 | (1) |
|
10.5.2 Closeness Centrality |
|
|
225 | (1) |
|
10.5.3 Betweenness Centrality |
|
|
225 | (4) |
|
10.5.4 Eigenvalue Centrality |
|
|
229 | (1) |
|
|
230 | (4) |
|
|
230 | (1) |
|
10.6.2 Small World Networks |
|
|
231 | (1) |
|
10.6.3 Scale-Free Networks |
|
|
232 | (1) |
|
10.6.4 Hierarchical Networks |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (3) |
|
|
239 | (2) |
|
11 Cluster Discovery in Biological Networks |
|
|
241 | (34) |
|
|
241 | (1) |
|
|
242 | (4) |
|
|
242 | (3) |
|
11.2.2 Classification of Clustering Algorithms |
|
|
245 | (1) |
|
11.3 Hierarchical Clustering |
|
|
246 | (6) |
|
11.3.1 MST-Based Clustering |
|
|
247 | (3) |
|
11.3.2 Edge-Betweenness-Based Clustering |
|
|
250 | (2) |
|
11.4 Density-Based Clustering |
|
|
252 | (11) |
|
|
252 | (2) |
|
11.4.2 k-core Decomposition |
|
|
254 | (4) |
|
11.4.3 Highly Connected Subgraphs Algorithm |
|
|
258 | (1) |
|
11.4.4 Modularity-Based Clustering |
|
|
259 | (4) |
|
11.5 Flow Simulation-Based Approaches |
|
|
263 | (4) |
|
11.5.1 Markov Clustering Algorithm |
|
|
263 | (2) |
|
11.5.2 Distributed Markov Clustering Algorithm Proposal |
|
|
265 | (2) |
|
|
267 | (2) |
|
|
269 | (3) |
|
|
272 | (3) |
|
|
275 | (28) |
|
|
275 | (1) |
|
|
276 | (5) |
|
12.2.1 Methods of Motif Discovery |
|
|
277 | (1) |
|
12.2.2 Relation to Graph Isomorphism |
|
|
278 | (1) |
|
12.2.3 Frequency Concepts |
|
|
279 | (1) |
|
12.2.4 Random Graph Generation |
|
|
280 | (1) |
|
12.2.5 Statistical Significance |
|
|
280 | (1) |
|
12.3 A Review of Sequential Motif Searching Algorithms |
|
|
281 | (10) |
|
12.3.1 Network Centric Algorithms |
|
|
282 | (4) |
|
12.3.2 Motif Centric Algorithms |
|
|
286 | (5) |
|
12.4 Distributed Motif Discovery |
|
|
291 | (8) |
|
12.4.1 A General Framework |
|
|
291 | (1) |
|
12.4.2 Review of Distributed Motif Searching Algorithms |
|
|
292 | (1) |
|
12.4.3 Wang et al.'s Algorithm |
|
|
292 | (2) |
|
12.4.4 Schatz et al.'s Algorithm |
|
|
294 | (1) |
|
12.4.5 Riberio et al.'s Algorithms |
|
|
294 | (5) |
|
|
299 | (2) |
|
|
301 | (2) |
|
|
303 | (20) |
|
|
303 | (1) |
|
|
304 | (4) |
|
13.2.1 Relation to Graph Isomorphism |
|
|
304 | (1) |
|
13.2.2 Relation to Bipartite Graph Matching |
|
|
305 | (1) |
|
13.2.3 Evaluation of Alignment Quality |
|
|
305 | (2) |
|
13.2.4 Network Alignment Methods |
|
|
307 | (1) |
|
13.3 Review of Sequential Network Alignment Algorithms |
|
|
308 | (3) |
|
|
308 | (1) |
|
|
309 | (1) |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
310 | (1) |
|
13.4 Distributed Network Alignment |
|
|
311 | (7) |
|
13.4.1 A Distributed Greedy Approximation Algorithm Proposal |
|
|
311 | (3) |
|
13.4.2 Distributed Hoepman's Algorithm |
|
|
314 | (2) |
|
13.4.3 Distributed Auction Algorithms |
|
|
316 | (2) |
|
|
318 | (2) |
|
|
320 | (3) |
|
|
323 | (28) |
|
|
323 | (1) |
|
|
324 | (1) |
|
|
325 | (18) |
|
14.3.1 Distance-Based Algorithms |
|
|
326 | (9) |
|
|
335 | (7) |
|
14.3.3 Maximum Likelihood |
|
|
342 | (1) |
|
14.4 Phylogenetic Networks |
|
|
343 | (2) |
|
14.4.1 Reconstruction Methods |
|
|
344 | (1) |
|
|
345 | (3) |
|
|
348 | (3) |
|
|
351 | (12) |
|
|
351 | (1) |
|
|
352 | (4) |
|
|
352 | (1) |
|
|
353 | (2) |
|
15.2.3 Bioinformatics Education |
|
|
355 | (1) |
|
|
356 | (4) |
|
|
356 | (1) |
|
|
357 | (3) |
|
|
360 | (2) |
|
15.4.1 Big Data Gets Bigger |
|
|
360 | (1) |
|
15.4.2 New Paradigms on Disease Analysis |
|
|
360 | (1) |
|
15.4.3 Personalized Medicine |
|
|
361 | (1) |
|
|
362 | (1) |
Index |
|
363 | |