"This book serves as an accessible introduction into how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced, but highly relevant topics such as network meta-analysis, multi-/three-level meta-analyses, Bayesian meta-analysis approaches, SEM meta-analysis are also covered. A companion R package, dmetar, is introduced in the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide"--
This book serves as an accessible introduction into how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced, but highly relevant topics such as network meta-analysis, multi-/three-level meta-analyses, Bayesian meta-analysis approaches, SEM meta-analysis are also covered. A companion R package, dmetar, is introduced in the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide.
The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible.
Key Features:
• Contains two introductory chapters on how to set up an R environment and do basic imports/manipulation of meta-analysis data, including exercises.
• Describes statistical concepts clearly and concisely before applying them in R.
• Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book.
This book serves as an accessible introduction into how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools.