|
|
1 | (22) |
|
|
1 | (8) |
|
|
1 | (2) |
|
|
3 | (1) |
|
|
4 | (2) |
|
|
6 | (3) |
|
|
9 | (5) |
|
|
9 | (1) |
|
1.2.2 Interval Modalities |
|
|
10 | (4) |
|
|
14 | (7) |
|
|
14 | (4) |
|
|
18 | (2) |
|
|
20 | (1) |
|
|
21 | (2) |
|
|
23 | (18) |
|
|
23 | (1) |
|
|
24 | (3) |
|
|
27 | (7) |
|
|
31 | (3) |
|
|
34 | (7) |
|
|
41 | (26) |
|
|
41 | (1) |
|
|
41 | (4) |
|
|
45 | (6) |
|
|
46 | (2) |
|
|
48 | (3) |
|
|
51 | (9) |
|
|
60 | (7) |
|
|
60 | (2) |
|
|
62 | (5) |
|
4. Deadline-Driven Scheduler |
|
|
67 | (22) |
|
4.1 Formalization of the Deadline-Driven Scheduler |
|
|
67 | (9) |
|
|
68 | (1) |
|
4.1.2 Periodic Requests and Deadlines |
|
|
69 | (3) |
|
|
72 | (2) |
|
|
74 | (2) |
|
4.2 Liu and Layland's Theorem |
|
|
76 | (13) |
|
|
89 | (10) |
|
5.1 Ideas Behind the Proof |
|
|
89 | (1) |
|
5.2 Proof of Relative Completeness |
|
|
90 | (9) |
|
|
99 | (12) |
|
6.1 Discrete-Time Duration Calculus |
|
|
99 | (3) |
|
6.1.1 Discrete Time Versus Continuous Time |
|
|
100 | (1) |
|
6.1.2 Expressiveness of Discrete-Time RDC |
|
|
101 | (1) |
|
6.2 Decidability for Discrete Time |
|
|
102 | (4) |
|
6.3 Decidability for Continuous Time |
|
|
106 | (3) |
|
6.4 Complexity, Tools and Other Decidable Subclasses |
|
|
109 | (2) |
|
|
111 | (14) |
|
|
111 | (3) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
112 | (1) |
|
7.1.4 Two-Counter Machines |
|
|
113 | (1) |
|
7.2 Undecidability of RDC1 (r) |
|
|
114 | (4) |
|
7.3 Undecidability of RDC2 |
|
|
118 | (4) |
|
7.4 Undecidability of RDC3 |
|
|
122 | (3) |
|
8. Model Checking: Linear Duration Invariants |
|
|
125 | (20) |
|
|
126 | (5) |
|
|
131 | (2) |
|
8.3 Linear Duration Invariants |
|
|
133 | (2) |
|
|
135 | (8) |
|
8.4.1 Congruent Equivalence |
|
|
136 | (5) |
|
8.4.2 Closure Properties of Normal Forms |
|
|
141 | (1) |
|
8.4.3 An Algorithm Deriving Normal Forms |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
143 | (2) |
|
9. State Transitions and Events |
|
|
145 | (20) |
|
|
145 | (3) |
|
|
148 | (5) |
|
9.2.1 Formulas S, S, S and S |
|
|
148 | (2) |
|
9.2.2 Formulas S, S, S and S |
|
|
150 | (2) |
|
9.2.3 Example: NOR Circuit |
|
|
152 | (1) |
|
9.3 Calculus for State Transitions |
|
|
153 | (7) |
|
9.3.1 Proof System: Part I |
|
|
154 | (3) |
|
9.3.2 Proof System: Part II |
|
|
157 | (2) |
|
9.3.3 Soundness and Relative Completeness |
|
|
159 | (1) |
|
|
160 | (5) |
|
|
161 | (1) |
|
|
162 | (3) |
10. Superdense State Transitions |
|
165 | (24) |
|
|
165 | (5) |
|
10.1.1 Superdense Computation |
|
|
166 | (3) |
|
|
169 | (1) |
|
10.2 Calculus for Superdense State Transitions |
|
|
170 | (5) |
|
|
170 | (1) |
|
|
170 | (1) |
|
|
171 | (2) |
|
|
173 | (2) |
|
|
175 | (14) |
|
|
175 | (1) |
|
|
176 | (4) |
|
|
180 | (5) |
|
10.3.4 Program Specification |
|
|
185 | (4) |
11. Neighborhood Logic |
|
189 | (20) |
|
|
189 | (2) |
|
11.2 Syntax and Semantics |
|
|
191 | (2) |
|
11.3 Adequacy of Neighborhood Modalities |
|
|
193 | (1) |
|
|
194 | (7) |
|
|
195 | (2) |
|
|
197 | (4) |
|
11.5 Completeness for an Abstract Domain |
|
|
201 | (3) |
|
11.6 NL-Based Duration Calculus |
|
|
204 | (5) |
|
11.6.1 State Transitions, Liveness and Fairness |
|
|
204 | (2) |
|
11.6.2 Example: Delay-Insensitive Circuits |
|
|
206 | (3) |
12. Probabilistic Duration Calculus |
|
209 | (18) |
|
|
209 | (2) |
|
12.2 Probabilistic Automata |
|
|
211 | (4) |
|
|
212 | (1) |
|
12.2.2 Satisfaction Probability |
|
|
213 | (2) |
|
12.3 Probabilistic Duration Calculus: Axioms and Rules |
|
|
215 | (4) |
|
|
215 | (1) |
|
12.3.2 Proof System: Part I |
|
|
216 | (2) |
|
12.3.3 Proof System: Part II |
|
|
218 | (1) |
|
|
219 | (8) |
|
12.4.1 Calculation of μ(-Des1) |
|
|
220 | (3) |
|
12.4.2 Calculation of μ(-dDes2) |
|
|
223 | (4) |
References |
|
227 | (12) |
Abbreviations |
|
239 | (2) |
Symbol Index |
|
241 | (2) |
Index |
|
243 | |